
COMMON LANGUAGE INFRASTRUCTURE FOR RESEARCH (CLIR): EDITING
AND OPTIMIZING .NET ASSEMBLIES

A Thesis
by

Shawn H. Windle

Submitted to the Graduate School
Appalachian State University

in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE

December 2012
Major Department: Computer Science

COMMON LANGUAGE INFRASTRUCTURE FOR RESEARCH (CLIR): EDITING
AND OPTIMIZING .NET ASSEMBLIES

A Thesis
by

Shawn H. Windle
December 2012

APPROVED BY:

Dr. James B. Fenwick Jr.
Chairperson, Thesis Committee

Dr. Cindy Norris
Member, Thesis Committee

Dr. James T. Wilkes
Member, Thesis Committee

Dr. James T. Wilkes
Chairperson, Computer Science

Edelma D. Huntley
Dean, Research and Graduate Studies

Copyright c© Shawn H. Windle 2012
All Rights Reserved

ABSTRACT

COMMON LANGUAGE INFRASTRUCTURE FOR RESEARCH (CLIR): EDITING

AND OPTIMIZING .NET ASSEMBLIES.

(December 2012)

Shawn H. Windle, Appalachian State University

Thesis Chairperson: Dr. James B. Fenwick Jr.

In 2002, Microsoft released the .NET Framework as it’s implementation of the Common

Language Infrastructure (CLI). The subsequent release of Mono, an open-source implemen-

tation of the CLI, allowed the .NET Framework audience to also include Max OS X, Linux

and Unix users. These tools enabled high-level .NET development, but low-level researchers

such as code optimizers have few tools available to manipulate .NET assembly files.

This thesis presents the Common Language Infrastructure for Research (CLIR)

comprised of three components: the Common Language Engineering Library (CLEL), the

Common Language Optimizing Framework (CLOT), and a suite of utility applications.

CLIR enables researchers to experiment with and develop tools for the .NET Framework

languages. CLEL provides the means to read, edit and write low-level .NET assemblies.

CLOT uses CLEL to provide a framework for code optimization including algorithms and

data structures for three traditional optimizations. Evaluations of program performance

demonstrate meaningful decrease in program execution time due to the application of these

optimizations, thus validating CLIR and enabling further .NET optimization research.

iv

ACKNOWLEDGEMENTS

I would like to express my profound appreciation to my thesis chairperson, Dr. James B.

Fenwick Jr., for all of the hard work and time he put into helping me, not just with this

thesis, but also for all of the classes I took at Appalachian State University with him. I

would also like to thank Dr. Cindy Norris, Professor Kenneth Jacker and Dr. James Wilkes

for all of their advice and help. I would also like to acknowledge that without the support

from my family this thesis would not have been possible.

v

Contents

Abstract iv

Acknowledgement v

List of Figures viii

List of Tables ix

1 Introduction 1

2 Background 3
2.1 The Common Language Infrastructure . 3
2.2 Overview of the Assembly .text section . 7
2.3 Common Intermediate Language Instruction Format 19
2.4 Related Work . 24

3 CLIR: Common Language Infrastructure for Research 26
3.1 CLEL: Common Language Engineering Library 27
3.2 CLOT: Common Language Optimization Toolset 32
3.3 User Applications . 35

4 Optimizations Background and Implementation 38
4.1 Optimization Overview and Goals . 38
4.2 Branch Instruction Replacement . 39

4.2.1 Peephole Optimization Background 39
4.2.2 Branch Instruction Replacement Implementation 40

4.3 Constant Propagation . 47
4.3.1 Constant Propagation Background 47
4.3.2 Constant Propagation Implementation 50

4.4 Method Inlining . 53
4.4.1 Method Inlining Background . 53
4.4.2 Method Inlining Implementation . 55

5 Optimization Tests 58
5.1 Introduction and Testing Environment . 59
5.2 One Pass Branch Instruction Replacement 60
5.3 Constant Propagation . 63
5.4 Method Inlining . 66

vi

6 Conclusion and Future Work 69
6.1 Conclusion . 69
6.2 Future Work . 71

Bibliography 72

A Bubble Sort in C# 76

B BubbleSort.exe hexadecimal dump 78

C Assembly File Format 84

Vita 120

vii

List of Figures

3.1 CLIR overview . 27
3.2 CLEL class . 27
3.3 CLEL overview . 28
3.4 ICLELReader interface . 28
3.5 ICLELWriter interface . 28
3.6 CLELAssembly class . 29
3.7 Token class . 30
3.8 ClassDescriptor class . 30
3.9 BuiltInType class . 30
3.10 MethodDescriptor class . 30
3.11 CLELInstruction class . 31
3.12 CLOT namespaces overview . 32
3.13 IOptimization interface . 33
3.14 OptimizationConfiguration class . 33
3.15 OptimizationController class . 36
3.16 Optimization Scheduling Tool . 37
3.17 OptimizationKey class . 37

4.1 Peephole examples . 39
4.2 BIR example . 41
4.3 BIR algorithm (version 1) . 41
4.4 Branch body . 42
4.5 Peephole BIR algorithm (version 1.1) . 42
4.6 Branch body, with missed replacement . 43
4.7 Converge BIR algorithm (version 2) . 43
4.8 One Pass BIR algorithm (version 3) . 45
4.9 Branch lists example . 45
4.10 Constant propagation example . 47
4.11 Constant propagation can uncover other optimization opportunities 48
4.12 Reaching definitions algorithm . 48
4.13 A gen and kill set example . 50
4.14 Example assignment statement decomposed 51
4.15 Constant propagation example . 52
4.16 Rules for method inlining . 55

C.1 PE and assembly file format . 84
C.2 Assembly .text section . 84
C.3 Overview of .rsrc section . 112

viii

List of Tables

2.1 Method header - public BubbleSort() . 8
2.2 Stream header - #GUID . 9
2.3 #˜ stream . 10
2.4 TypeRef table . 11
2.5 TypeDef table . 12
2.6 Field table . 13
2.7 MethodDef table . 14
2.8 Param table . 15
2.9 MemberRef table . 16
2.10 StandAloneSig table . 16
2.11 #Strings stream . 17
2.12 #US stream . 18
2.13 #Blob stream . 18
2.14 Unconditional branch examples . 20
2.15 Conditional branch examples . 20
2.16 Load examples . 21
2.17 Method call examples . 22

5.1 Relative program sizes . 59
5.2 Branches replaced for Game of Life . 61
5.3 Branches replaced for Huffman . 61
5.4 Branches replaced for ZipFolder . 62
5.5 Code size changes (in bytes) . 62
5.6 Average execution time (in seconds) for BIR 62
5.7 ZipFile C# code fragment . 63
5.8 ZipFile CIL . 63
5.9 ZipFile Assembly . 63
5.10 Number of Constants Propagated . 64
5.11 Average execution time (in seconds) . 64
5.12 Huffman Coding VB.NET code fragment 65
5.13 FindProbabilitiesForSymbols CIL . 65
5.14 Average execution time (in seconds) for Method Inlining at 10% and 20% . 67
5.15 Average execution time (in seconds) for Method Inlining at 30%, 40% and 50% 67

C.1 DOS header . 85
C.2 DOS stub instructions . 87
C.3 PE header . 88
C.4 Standard fields . 88

ix

C.5 NT specific . 90
C.6 Data directories . 92
C.7 Section header: .text . 93
C.8 Section header: .rsrc . 93
C.9 Section header: .reloc . 94
C.10 Import address table . 94
C.11 Import table . 95
C.12 Hint/Name table . 96
C.13 Import lookup table . 96
C.14 CLI header table . 96
C.15 Method header - public BubbleSort() . 97
C.16 Method header - private void doBubbleSort() 98
C.17 Method header - public void swap(int first,int second) 98
C.18 Method header - public static void Main() 99
C.19 Metadata root . 99
C.20 Stream header - #˜ . 100
C.21 Stream header - #Strings . 100
C.22 Stream header - #US . 101
C.23 Stream header - #Blob . 101
C.24 Stream header - #GUID . 101
C.25 #˜ stream . 101
C.26 Module table . 102
C.27 TypeRef table . 103
C.28 TypeDef table . 103
C.29 Field table . 104
C.30 MethodDef table . 105
C.31 Param table . 106
C.32 MemberRef table . 107
C.33 StandAloneSig table . 107
C.34 Assembly table . 108
C.35 AssemblyRef table . 108
C.36 #Strings stream . 109
C.37 #US stream . 109
C.38 #Blob stream . 110
C.39 #GUID stream . 111
C.40 Type directory . 113
C.41 Entry 1 . 113
C.42 Name directory . 113
C.43 Entry 1 . 113
C.44 Language directory . 114
C.45 Entry 1 . 114
C.46 Data entry 1 . 114
C.47 VS VERSIONINFO structure . 114
C.48 VS FIXEDFILEINFO structure . 115
C.49 VarFileInfo structure . 115
C.50 Var structure . 115
C.51 StringFileInfo structure . 116
C.52 StringTable structure . 116

x

C.53 String structure 1 . 116
C.54 String structure 2 . 116
C.55 String structure 3 . 116
C.56 String structure 4 . 116
C.57 String structure 5 . 117
C.58 String structure 6 . 117
C.59 String structure 7 . 117
C.60 String structure 8 . 117
C.61 String structure 9 . 118
C.62 String structure 10 . 118
C.63 FixUp 1 . 118

xi

Chapter 1

Introduction

In conjunction with several other companies, Microsoft developed the Common Language

Infrastructure (CLI) [37] in 2000. The CLI detailed a new programming and execution

environment. A platform neutral virtual machine, type system and instruction set called

the Common Intermediate Language (CIL) are core components of the CLI. The CLI was

submitted to the European Computer Manufacturers Association (ECMA) and the Inter-

national Organization for Standardization (ISO) and accepted in December 2001. In 2002,

Microsoft released its implementation of the CLI called the .NET Framework. A new lan-

guage was also released with .NET called C# [22]. Instead of creating a completely new

low-level file format, Microsoft extended its existing .exe Portable Executable format and

used it as the basis of the .NET assembly file format. A .NET compiler translates program

source code files into an assembly containing CIL instructions. At runtime, the virtual

machine translates the CIL to native machine-specific assembly instructions. Delaying the

generation of the machine-specific assembly instructions to runtime allows the CIL code

to be portable to any machine with a CLI-compliant virtual machine. Chapter 2 will give

background information on the CLI, the .NET Framework, and the CIL.

1

2

Since the .NET Framework comes bundled with the Windows operating system,

there is a large audience to use the .NET Framework. Mono, an open source implementation

of the .NET Framework, runs on Linux, Mac OS X, and Unix, as well as Windows. With

.NET and Mono, any developer can develop and execute .NET programs on any of the

major platforms. With the ensuing surge in .NET programming, researchers, particularly

code optimizers, need access to the low-level CIL code. Unfortunately, there are very few

options available to easily manipulate .NET assemblies.

This thesis presents the Common Language Infrastructure for Research (CLIR) as

a layered framework for conducting .NET assembly research. A reusable library called

the Common Language Engineering Library (CLEL) is the CLIR component that allows

the programmer to read, edit and write .NET assemblies. CLEL can be used to develop

many other tools such as decompilers, optimizers, compilers, and virtual machines. To

demonstrate the usefulness of CLEL, an optimization framework called the Common Lan-

guage Optimizing Toolset (CLOT) is presented. Chapter 3 details the development of

CLEL, CLOT, and their API’s. CLOT uses CLEL to implement three different optimiza-

tions. These optimizations are Branch Instruction Replacement, Constant Propagation and

Method Inlining. Chapter 4 details the background theory for the optimizations developed

for this thesis. Chapter 5 evaluates the results of applying the aforementioned code opti-

mizations to several programs. The optimizations are shown to have meaningful effects on

program performance. Thus, CIL optimization is beneficial and the usefulness of the CLIR

is validated. Chapter 6 concludes with a summary of the work and suggestions for future

directions.

Chapter 2

Background

This chapter presents an overview and history of the Common Language Infrastructure (Sec-

tion 2.1), an overview of the lower-level assembly file format (Section 2.2), the instruction

format (Section 2.3), and summarizes some related work (Section 2.4).

2.1 The Common Language Infrastructure

In August 2000, Microsoft, Hewlett-Packard, Intel, and others began development of the

Common Language Infrastructure (CLI). The CLI is a specification that details a broad set

of features and rules for developing object-oriented programming languages and execution

environments. The CLI was developed to be as programming language neutral as possible

in order to support as wide a group of programming languages as possible. The CLI

was ratified by the European Computer Manufacturers Association (ECMA) in December

2001 and the International Organization for Standardization (ISO) in April 2003. In 2002,

Microsoft released an implementation of the CLI specification called the .NET Framework,

which contained support for four programming languages: C#, Visual Basic .NET, JScript

and Managed C++ .NET. On June 30, 2004, an open source implementation of the CLI

3

4

specification called Mono was released with support for the C# programming language

[39]. Later versions of Mono added support for generics and newer versions of the .NET

Framework.

The CLI is composed of three sections: the Common Type System (CTS), the

Common Language System (CLS) and the Virtual Execution System (VES) [37]. The CTS

defines a complete set of built-in types and methods for the user to combine and name

new types. Two types are supported: reference types and value types. Reference types are

always allocated on the heap and accessed by a reference to the object. Value types, on the

other hand, are allocated on the stack and can be accessed directly. The CLI Specification

includes all of these types: bool, char, object, string, float32, float64, int8, int16, int32,

int64, native int, native unsigned int, typedref, unsigned int8, unsigned int16, unsigned

int32, and unsigned int64 [37]. A person developing a higher level programming language

would choose a subset of these built-in types to implement in their programming language.

The CTS contains no primitives, only types. Therefore, when a programmer uses the “int”

keyword like in C#, the compiler maps this to the System.Int32 type, which implements

the int32 value type in the CTS. The CTS also allows the language designer to create new

built-in types.

Switching to the programmer’s perspective, the CTS also provides the standard

object oriented features. Inheritance allows the programmer to create a new type, which is

called a child type, by extending an existing type, which is called the parent type. Extending

the parent type can be accomplished by adding new methods to the child type and overriding

existing methods in the parent type. The CTS only supports single inheritance, thus a child

type can only have one parent type. Further, all types, except System.Object, either inherit

directly or indirectly from the System.Object type.

5

The process of taking a value type and converting it to a reference type is called

boxing [37]. To box a value type, new memory is allocated on the heap, the value type’s value

is copied to this address and a reference to this new reference type is returned. Unboxing

is the process of taking a reference type and converting it to a value type.

Each type in the CTS has one or more methods associated with it, with a default con-

structor method being required for all CTS types [37]. These methods describe the opera-

tions that are allowed on a certain type. Types also can contain zero or more fields. The CTS

supports seven mechanisms for the accessibility of types and fields: Compiler-Controlled,

Private, Family, Assembly, Family-and-Assembly, Family-or-Assembly, and Public [37].

These accessibility types range from Public, which is visible to all types, to Private, which

is only visible to to the types that declare the field or method. Language designers are

not required to implement all of the accessibility types and can choose a subset of these to

implement.

One of the goals of the CLI was programming language interoperability and the

Common Language System (CLS) was developed to achieve this goal. The CLS is a subset

of the CTS types used for calls between different CLI-compliant programming languages.

All of the built-in types are in the CLS except int8, native unsigned int, typedref, unsigned

int16, unsigned int32, and unsigned int64. The CTS defines all possible types, but some

programming language designers may decide not to implement certain types. To ensure

programming language interoperability between a programming language that is being de-

signed and other CLI-compliant languages, the types in the CLS must be implemented

[37].

The Virtual Execution System (VES) defines the low-level assembly file format,

metadata, the Common Intermediate Language (CIL) instruction format, and the rules

6

governing the Virtual Machine (VM) and the Just-In-Time (JIT) compiler [37]. A compiler

takes code written in one language and outputs it in another form. Traditionally, this

output form is machine code that is specific to a certain architecture. However, the output

of a compiler for a CLI-compliant programming language is called an assembly and contains

architecture independent code called the Common Intermediate Language (CIL). The CIL

is an instruction set for an abstract stack machine [37]. A stack machine has no registers;

instead, data are pushed on a stack, operations are performed using the data on the top of

the stack, and operation results are pushed onto the stack. Method parameters and return

values are also passed by pushing them onto the stack. When an assembly is run, a Virtual

Machine (VM) reads in the assembly, parses it and passes it to the JIT compiler to generate

machine code. Portability is obtained because architecture-dependent machine code is not

generated until the assembly is run. Therefore an assembly can be run on any architecture

with an implementation of a CLI-compliant VM and JIT compiler.

Beside the CIL instructions, the assembly also contains metadata. These metadata

contain descriptions of the assembly called the manifest, infomation about the environment

the assembly was compiled in, a description of the types in the assembly, signatures of all

the methods in the assembly, attributes about the instructions and data in the assembly,

and security information [37]. This information can be used by compilers, debuggers and

virtual machines to see what types and methods an assembly exports for others to use. The

assembly format is an extension of the Windows Portable Executable (PE) format [36][37]

which is used by Windows executables. Just like Windows executables, assemblies either

have an “.exe” or “.dll” extension. An assembly with an “.exe” extension is an application

and an assembly with a “.dll” extension is a library.

7

The .NET Framework contains a group of libraries called the Base Class Library

(BCL). The BCL contains types that can be used for string manipulation, networking,

drawing graphical user interfaces, and a wide variety of other uses. Prior to the .NET

Framework release, Microsoft released two compilers with its Integrated Development Envi-

ronment Visual Studio (VS): Visual Basic and Visual C++. The C++ compiler read ANSI

C++ and produced executables with native machine instructions. When Microsoft released

the .NET Framework, Microsoft rewrote the Visual Basic and C++ compilers to produce

assemblies. The .NET Framework introduced two new compilers: C# and JScript. The

Visual Studio environment also contains a tool called ildasm that allows the user to view,

but not edit, the contents of an assembly [50].

To be compatible with the .NET Framework, Mono also shipped with its own im-

plementation of the BCL with most of the same types. Similar to ildasm, Mono contains a

tool called monodis. Beta compilers for Visual Basic .NET and JScript and better generics

support in the C# compiler were added in Mono 1.2.

2.2 Overview of the Assembly .text section

The Assembly file format is an extension of the Portable Executable (PE) file format [36][37]

used by Windows executables. Since a main focus of this thesis is the optimization of the

code in assemblies, this section will cover the decomposition and explanation of the fields and

sections needed to perform the optimizations detailed in Chapter 4. The example assembly

implements the bubble sort [12] algorithm in C# and was compiled into “BubbleSort.exe”

using the Mono 1.2.6 C# compiler. See Appendix A for the C# code and Appendix B for

the hexadecimal dump for this example. Appendix C covers this example in more detail.

8

Fields in an assembly are given as either offsets from the beginning of the file or as

a relative virtual address (RVA), which is the virtual address of a section plus the offset

to the field. For the example in Appendix C, the .text section begins at offset 0x2001 and

RVA 0x2000. Therefore when this assembly is run, the .text section will be loaded at virtual

address 0x2000 and fields in the .text section will have an RVA based on this virtual address.

Offset RVA Name Value

2ec 20ec Type/Size Flags 1330

2ee 20ee Max Stack 001f

2f0 20f0 Code Size 0000 0106

2f4 20f4 LocalVarSig Token 1100 0001

2f8 20f8 Code 02280a00000102730a0000027d04000001027b040000011f5b8c01
0000036f0a00000326027b040000011b8c010000036f0a00000326
027b040000011f658c010000036f0a00000326027b04000001198c
010000036f0a00000326027b040000011f3a8c010000036f0a0000
0326027b040000011ff28c010000036f0a00000326027b04000001
20000000c78c010000036f0a00000326027b040000011f2c8c0100
00036f0a00000326027b04000001178c010000036f0a0000032602
7b0400000120000002a68c010000036f0a00000326022806000002
160a3800000015027b04000001066f0a000004280a000005161758
0a06027b040000016f0a0000063fffffffda2a

Table 2.1: Method header - public BubbleSort()

The first part in the .text section to mention is the Method Headers, which starts

at offset 0x2ec and RVA 0x20ec in the “BubbleSort.exe” assembly. Each method header

represents one method in an assembly. Method headers are one of two types, either tiny or

fat. If bits zero and one of the first byte of the method header are B10, then it is a tiny

method. If the same two bits are instead B11, then it is a fat method. The first method

header shown in Table 2.1 is fat because bit zero and one of 0x13 (B0001 0011) are B11.

Since this is a fat method, it starts with a flags and size field that is two bytes in length. The

“flags and size” field in Table 2.1 is 0x3013 (B0011 0000 0001 0011) because the assembly

file is in little endian format. Bits zero to eleven (B0011 0000 0001 0011) are the flags for

1Numbers that begin with “0x” are in hexadecimal. Binary numbers start with “B”. All numbers in
tables are in hexadecimal. Numbers not in a table or beginning with “B” or “0x” are in decimal.

9

this method and bits twelve through fifteen (B0011 0000 0001 0011) are the size of this

method header in 4-byte integers excluding the code field. Therefore this method header

has three 4-byte integers for the Type/Size, Max Stack, Code Size, and LocalVarSig Token

fields. All Fat methods have the same five fields shown in Table 2.1. The max stack field

indicates the maximum size of the stack during the method’s execution. The code size field

tells how many bytes the upcoming code field is.

The LocalVarSig token is a four byte reference into a table contained in the metadata

section that contains type information about the local variables in this method. The most

significant byte of this token is the table number and the other three bytes are an index

into that table. In Table 2.1, the LocalVarSigToken references row 1 (0x00 0001) in table

0x11, which is the LocalVarSig metadata table.

The final field contains the Common Intermediate Language (CIL) code of this fat

method. The CIL instruction format will be covered in Section 2.3. The other method

headers can be seen in Appendix C.

A tiny method header only contains the flags, code size and code fields. A tiny

method has no local variables, no exceptions, no extra data sections, the stack usage does

not exceed eight values and the code size is 64 bytes or less [37].

Offset RVA Name Value

544 2344 Offset 0000 0298

548 2348 Size 0000 0010

54c 234c Name 2347 5549 4400 0000

Table 2.2: Stream header - #GUID

Five similar headers that describe persistent streams in the assembly follow the

method header section. These five streams are #˜, #US, #Strings, #Blob, and #GUID.

The #˜ stream contains information about the metadata tables later in the assembly. The

10

#US stream contains string literals that were in the original source code. The #Strings

stream contains method and field names and other compiler generated strings. The #Blob

stream contains encoded types used by the metadata tables later in the assembly. The

#GUID stream contains Global Unique Identifiers (GUID) used to uniquely identify as-

semblies. Table 2.2 shows the #GUID stream. The offset field gives the location of the

stream in the metadata (see Table C.19 in Appendix C). The size field contains the size of

the stream in bytes. The #GUID stream in Table 2.2 is 16 (0x0000 0010) bytes long. The

final field, name, gives a string representation of the name of the stream. For example, the

ASCII string “#GUID\0\0\0” is encoded in the bytes 0x2347 5549 4400 00 in Table 2.2.

Offset RVA Name Value

558 2358 Reserved1 0000 0000

55c 235c Major Version 01

55d 235d Minor Version 00

55e 235e Heap Sizes 00

55f 235f Reserved2 01

560 2360 Valid 0000 0009 0002 0557

568 2368 Sorted 0000 0000 0000 0000

570 2370 Table Rows 0000 0001 0000 0004 0000 0002 0000 0001 0000 0004
0000 0002 0000 0007 0000 0003 0000 0001 0000 0001

Table 2.3: #˜ stream

The five streams follow the stream headers. The #˜ stream located at RVA 0x2358

is shown in Table 2.3. The Reserved1 and Reserved2 fields are reserved for future use. The

#˜ stream describes the other metadata tables that follow. The major and minor version

fields indicate how the metadata is encoded in this assembly. The Heap Sizes field in the #˜

stream is a bit field that contains a flag if a stream has a size that is greater than or equal

to 65,536 bytes. If bit 0 is set, then all indexes from any metadata table into the #Strings

stream are 4-bytes wide. If that bit is not set, then indexes into the #Strings stream are

2-bytes wide. The #GUID stream (bit 1) and #Blob stream (bit 2) also have a bit in Heap

11

Sizes reserved for this purpose. Some of the fields in metadata tables discussed later (like

the Name field in the TypeDef table in Table 2.5) index into these streams. Since none of

the bits are set in the Heap Sizes field, then all stream indices in the metadata tables are

2-bytes wide. The valid field is a bit vector that has a bit set for each metadata table that

comes later in the assembly. Since 8 bytes, which is 64 bits, are used in the Valid field to

represent what tables are in an assembly, there are 64 such tables possible. This assembly

uses 10 of these tables because 10 bits are set in 0x0000 0009 0002 0557. According to the

Valid field, this assembly contains the Module Table, TypeRef Table, TypeDef Table, Field

Table, MethodDef Table, Param Table, MemberRef Table, StandAloneSig Table, Assembly

Table, and the AssemblyRef Table. The Sorted field is a bit vector that contains a bit for

each metadata table that is sorted. Since the sorted field is 0x0000 0000 0000 0000, none

of the metadata are sorted according to any criteria.

The Table Rows field is a list of 4-byte integers, one for each of the metadata tables

used in this assembly. Each 4-byte integer in the Table Rows field gives the number of

rows in each metadata table. For example, since bit 6 is set in the valid bit vector, the

MethodDef table exists in this assembly. Since the MethodDef table is the fifth table that

exists in the Valid field, the fifth 4-byte integer in the table rows field (0x0000 0004) holds

the number of rows in the MethodDef table. Note that the first row of a metadata table is

indexed as 1 and not 0.

Offset RVA ResolutionScope Name Namespace

5a2 23a2 0006 000a 0011

5a8 23a8 0006 001e 0028

5ae 23ae 0006 003b 0011

5b4 23b4 0006 004e 0011

Table 2.4: TypeRef table

12

Not all of the metadata tables will be covered in this section. Only those directly

related to the optimizations performed in this thesis. See Appendix C for a more detailed

explanation of all of the metadata tables in this example.

The metadata table TypeRef (see Table 2.4) starts at RVA 0x23a2. Each of the four

rows in the TypeRef Table represents an external type that is referenced in this assembly.

The ResolutionScope is an encoded index into either the Module, ModuleRef, AssemblyRef

or TypeRef Table that represents the module or assembly this type came from. Take row

one for example. Since bits 0 and 1 are B10 in the ResolutionScope 0x0006, this is an

index into the AssemblyRef Table [37]. Encoding B00, B01, and B11 represents the tables

Module, ModuleRef, and TypeDef respectively. The other 14 bits represent the row number

[37]. The ResolutionScope of the first row refers to row 0x0001 of the AssemblyRef Table.

The Name field is a byte index into the #Strings stream which contains the name of this

type. For example, row one’s name references the ASCII string “Object” at offset 0x686

in the #Strings stream (0x67c + 0x000a = 0x686 in Table 2.11). The Namespace field

is a byte index into the #Strings stream which contains the string representation of the

namespace this type is in. For example, the ASCII string “System” is pointed at by row

one’s Namespace field. Therefore, row one represents the external type System.Object.

Offset RVA Flags Name Namespace Extends FieldList MethodList

5ba 23ba 0000 0000 007e 0000 0000 0001 0001

5c8 23c8 0010 0001 0073 0000 0005 0001 0001

Table 2.5: TypeDef table

The TypeDef Table (see Table 2.5) at RVA 0x23ba can be seen in Table 2.5. Each

row in the TypeDef Table represents a type that is defined in the assembly. The Flags field

contains a bitset that represent the visibility of a type. For example, row two has the Public

13

flag (0x0000 0001), which means this type is globally visible, and the BeforeFieldInit flag

(0x0010 0000), which indicates non-static fields must be initialized before static fields can

be accessed. The Name and Namespace fields are indices into the #Strings stream, which

contains the string representation of this type. The Extends field is an encoded index into

either the TypeDef, TypeRef or TypeSpec Table. Bits 0 and 1 are used to identify the

table: TypeDef (B00), TypeRef (B01), and TypeSpec (B10). The other 14 bits represent

the row number [37]. Therefore, row two’s Extends field 0x0005 is encoded as TypeRef Table

(B0000 0000 0000 0101) and row 1 (B0000 0000 0000 0101). TypeRef row 1 represents the

System.Object type. Therefore this type extends (or inherits) from the System.Object type.

The FieldList field indexes into the Field Table to show which fields are a part of this type.

The index into the Field Table is the start of a line of fields that belong to that type. The

line ends when either the Field Table ends or the next types fields begin. The MethodList

is an index into the MethodDef Table that represents the line of methods that belong to a

certain type. In this example, row 2 represents the “BubbleSort” type whose methods start

at row 1 of the MethodDef Table and whose fields start at row 1 of the Field Table.

Offset RVA Flags Name Signature

5d6 23d6 0001 0096 0027

Table 2.6: Field table

Each row in the Field Table (Table 2.6) represents a field that belongs to a type.

The Flags field is a bitset that represents the access permissions of the field. For example,

the Flag field in row one has the private flag (0x0001) set. The Name field is an index into

the #Strings stream, which contains the string representation of the name of this field. In

this case, the ASCII string “nums” is found by using the offset in row one’s Name field to

index into the #Strings stream. The Signature field is a index into the #Blob stream that

14

represents the type of this field. Thus, this encodes the private field called “nums” seen in

the source code in Appendix A.

Offset RVA RVA ImplFlags Flags Name Signature ParamList

5dc 23dc 0000 20ec 0000 1886 0018 0001 0001

5ea 23ea 0000 2200 0000 0081 009b 0001 0001

5f8 23f8 0000 2294 0000 0096 0086 00a8 0035

606 2406 0000 22e0 0000 0096 00ba 003b 0003

Table 2.7: MethodDef table

Each row in the MethodDef Table (see Table 2.7) represents a method that is defined

in this assembly. The RVA field is the RVA to the Method Header that contains the

information and CIL about the method to which this row refers. The ImplFlags field

contains flags like method is implemented in CIL code (0x0000) and method is implemented

in native code (0x0001). The Flags field contains flags for the visibility of this method. The

Name field indexes into the #Strings stream with the ASCII representation of the name of

this method. The Signature field is an index into the #Blob stream, which contains the

encoded representation of the parameters and return type of this method. The ParamList

field is an index into the Param Table, which starts a line of parameters that belong to this

method [37].

In Table 2.7, the RVA field in row one references Table 2.1, which is the method

header for the BubbleSort constructor. The ImplFlags for row one is 0x0000 because the

method is implemented in CIL. The Flags field has the RTSpecialName (0x1000), Special-

Name (0x0800), HideBySig (0x0080) and Public (0x0006) flags set. The first two flags are

set because this method is treated special because it is a constructor. The third flag tells

how inheritance should hide this method if it is overridden [37]. The last flag tells the

visibility of this method. The Name value references the ASCII string “.ctor” by following

15

the offset 0x694 (0x67c + 0x0018 = 0x694) in the #Strings stream. This string is the inter-

nal name for constructors. The Signature value references offset 0x741 (0x0740 + 0x0001

= 0x0741) in the #Blob stream (see Table 2.13), which contains the bytes 0x3020 0001.

The first byte is the size of the #Blob row minus the size byte. The next byte contains a

calling convention flag and a method type flag. There are two mutually exclusive calling

convention flags: DEFAULT (0x00) and VARARG (0x05). The DEFAULT flag is set when

a method passes it’s parameters by pushing them onto the stack before calling the method.

The VARARG flag is used when a method has a variable number of arguments. Special

CIL instructions are used to put and get the parameters on and off the stack when the

VARARG flag is set. There is only one method type flag: HASTHIS (0x20). The presence

of this flag means that this is an instance method. If the HASTHIS flag is not set, then

this is a static method. This method has the DEFAULT and HASTHIS flags set. The next

byte contains the number of parameters. The BubbleSort constructor has no parameters.

The next byte encodes the return type. Since this is a constructor, the magic number ELE-

MENT TYPE VOID (0x01) is used [37]. If the method has parameters an encoded value or

magic number for each parameter would follow. The ParamList is an index into the Param

table that begins the list of parameters for this method. Note that the method represented

by row 2 has parameters that start at index 1. Therefore, the BubbleSort constructor has

parameters row one to one, which represents no parameters.

Offset RVA Flags Sequence Name

614 2414 0000 0001 00ad

61a 241a 0000 0002 00b3

Table 2.8: Param table

16

Offset RVA Class Name Signature

620 2420 0009 0018 0001

626 2426 0011 0018 0001

62c 242c 0011 0041 000e

632 2432 0011 0045 0013

638 2438 0021 0056 0018

63e 243e 0011 0060 001d

644 2444 0011 006a 0021

Table 2.9: MemberRef table

The Param Table can be seen in Table 2.8. Each row in the Param Table represents

one parameter used by a method. The Flags field contains flags about the usage of a

parameter. The Flags field contains flags about whether a parameter is called by reference

or by value. The Sequence field contains the number of total parameters in the method that

own this parameter. The Name field is an index into the #Strings stream which contains

the ASCII representation of this parameter’s name.

Offset RVA Signature

64a 244a 002b

64c 244c 002f

64e 244e 002b

Table 2.10: StandAloneSig table

The MemberRef Table follows the Param Table (see Table 2.9). Each row in the

MemberRef Table represents either a reference to an external method or field in another

assembly. The Class field is an encoded index into either the TypeDef (B000), TypeRef

(B001), ModuleRef (B010), MethodDef (B011), or TypeSpec (B100) table. Bits 0 through

2 are used to determine which table and the other 13 bits are the row number [37]. For

example, the Class field in row 1 indexes into the TypeRef Table (B0000 0000 0000 1001)

at row 1 (B0000 0000 0000 1001). The Name field is a byte index into the #Strings stream,

which represents the name of this external field or method. Therefore the name of row 1 is

17

“.ctor” that is the internal name for a constructor. The Signature field is a byte index into

the #Blob stream, which contains either the type of the external field or the parameters

and return type for the external method.

Offset RVA Value String

67c 247c 00

67d 247d 6d73 636f 726c 6962 00 mscorlib

686 2486 4f62 6a65 6374 00 Object

68d 248d 5379 7374 656d 00 System

694 2494 2e63 746f 7200 .ctor

69a 249a 4172 7261 794c 6973 7400 ArrayList

6a4 24a4 5379 7374 656d 2e43 6f6c 6c65 6374 696f 6e73 00 System.Collections

6b7 24b7 496e 7433 3200 Int32

6bd 24bd 4164 6400 Add

6c1 24c1 6765 745f 4974 656d 00 get Item

6ca 24ca 436f 6e73 6f6c 6500 Console

6d2 24d2 5772 6974 654c 696e 6500 WriteLine

6dc 24dc 6765 745f 436f 756e 7400 get Count

6e6 24e6 7365 745f 4974 656d 00 set Item

6ef 24ef 4275 6262 6c65 536f 7274 00 BubbleSort

6fa 24fa 3c4d 6f64 756c 653e 00 ¡Module¿

703 2503 4275 6262 6c65 536f 7274 2e65 7865 00 BubbleSort.exe

712 2512 6e75 6d73 00 nums

717 2517 646f 4275 6262 6c65 536f 7274 00 doBubbleSort

724 2524 7377 6170 00 swap

729 2529 6669 7273 7400 first

72f 252f 7365 636f 6e64 00 second

736 2536 4d61 696e 00 Main

73b 253b 00

Table 2.11: #Strings stream

The StandAloneSig Table can be seen in Table 2.10. Each row of the StandAloneSig

Table is referenced by one Method Header. The Signature field is a byte index into the

#Blob stream, which contains the encoded types of the local variables in a method.

Several data streams follow these tables beginning with the #Strings stream (see

Table 2.11) starting at RVA 0x247c. The #Strings stream is a byte stream of ASCII strings

separated by the null character. The #Strings stream is used by many parts of the assembly

including the metadata sections.

18

Offset RVA Value String

73c 253c 00

73d 253d 00

73e 253e 00

73f 253f 00

Table 2.12: #US stream

This is followed by the #US stream (see Table 2.12) starting at RVA 0x253c. The

#US stream is a byte stream of ASCII strings that were string literals used by the pro-

grammer in the original source code. Since there were no string literals in the code, the

#US stream is empty. The four null bytes were added because the size of each stream must

be a multiple of four.

Offset RVA Byte(s)

740 2540 00

741 2541 0320 0001

745 2545 08b7 7a5c 5619 34e0 89

74e 254e 0420 0108 1c

753 2553 0420 011c 08

758 2558 0400 0101 1c

75d 255d 0320 0008

761 2561 0520 0201 081c

767 2567 0306 1209

76b 256b 0307 0108

76f 256f 0507 0308 0808

775 2575 0520 0201 0808

77b 257b 0300 0001

77f 257f 00

Table 2.13: #Blob stream

The #Blob stream starting at RVA 0x2540 can be seen in Table 2.13. The #Blob

stream conatins encoded type information about method parameters, fields and local vari-

ables. Consider the swap method for example (see Appendix A). The swap method takes

two ints as parameters and returns void. The swap method is represented by the third row

in the MethodDef Table (see Table 2.7). Note the value of the Name field (0xa8). This

offset points to the ASCII string “swap” at offset 0x724 (0x67c + 0xa8 = 0x724) in the

19

#Strings stream (see Table 2.11). The ParamList in the same row of the MethodDef table

contains the value 0x35. This is an offset into the #Blob stream that contains the parame-

ters and return types for the swap method. These encoded types are at offset 0x775 (0x740

+ 0x35 = 0x775) in the #Blob stream. The first byte, which is 0x05, is the length of the

#Blob entry minus the size byte itself. The next byte contains flags. The HASTHIS (0x20)

flag and the DEFAULT (0x00) flag are set in this example. The HASTHIS flag specifies

that this is an instance method. The DEFAULT flag specifies that this method passes it’s

parameters on the stack. The next byte contains the number of parameters of this method.

In this case, swap has 0x02 parameters. Next is the encoded type for the method’s return

value: 0x01 (ELEMENT TYPE VOID) for a void method. Next comes an encoded value

or magic number for each of the parameters. In this case, two 0x08 (ELEMENT TYPE I4)

follow, which represents the int32 value type [37].

2.3 Common Intermediate Language Instruction Format

This section covers the encoding and use of a subset of the Common Intermediate Language

(CIL) instructions used by Common Language Infrastructure (CLI) assemblies. The CIL

instructions covered will be the ones necessary to understand the optimizations covered in

Chapter 4 of this thesis. CIL instructions are composed of one or two operation code (or

opcode) bytes followed by zero or more extra bytes.

The first group of instructions to cover are branch instructions. Branch instructions

are instructions that can change the flow of instruction execution. Branch instructions

come in two types: unconditional and conditional branches. Unconditional branches are

always taken and conditional branches are taken depending on the result of a comparison

operation.

20

Bytes CIL instruction

2b 08 br.s 0x8

38 00000021 br 0x21

Table 2.14: Unconditional branch examples

Table 2.14 contains examples of the only two unconditional branch instructions in

the CLI: br and br.s. The Bytes column is in hexadecimal and the intermediate values in

the CIL instruction column is in decimal. Both instructions start with a 1-byte opcode.

After the 1-byte opcode, the br.s example has a 1-byte intermediate value following it. All

intermediate values in CIL instructions are signed unless noted. When the example br.s

instruction is executed, execution will jump eight bytes from the end of the br.s instruction

in the byte instruction stream. The br instruction is a long branch because it uses four

bytes to encode the jump offset. The br example in Table 2.14 transfers control to 0x21 (or

33) bytes after the end of the br instruction.

Bytes CIL instruction

3d fffffff2 bgt 0xfffffff2

37 ff blt.un.s 0xff

39 00000010 br.false 0x10

Table 2.15: Conditional branch examples

All of the conditional and unconditional branch instructions also come in two forms:

a long and a short version. The short version has a 1-byte intermediate value and the long

version has a 4-byte intermediate. Table 2.15 gives a few examples of conditional branches.

Whether these branches are taken or not depends on the result of a comparison to the

top of the internal stack. The bgt example will branch to the instruction 14 bytes before

(0xfffffff2 = -14) the end of the bgt instruction if and only if the top of the stack is greater

then the second element on the stack. The second example is a short branch (“.s”) and the

21

intermediate is interpreted as an unsigned value (“.un”). Therefore, if the top of the stack

is less than the second element on the stack, execution will jump 0xff (or 255) bytes after

the blt.un.s instruction. Note, long and short forms are available for every branch, but not

every branch has an unsigned equivalent. Comparisons using booleans are also allowed as

in the last example from Table 2.15. If the boolean value false is found on the top of the

stack, execution jumps 0x10 (or 16) bytes after the end of the br.false instruction.

Bytes CIL instruction

16 ldc.i4.0

1f 14 ldc.i4.s 0x14

04 ldarg.2

11 20 ldloc.s 0x20

14 ldnull

7b 04000001 ldfld 0x4000001

Table 2.16: Load examples

The next group of CIL instructions are used to push elements to the top on the

stack. Table 2.16 contains some, but not all, of the instructions to load elements onto the

stack. Also, note that some instructions have side effects that place elements to the stack

(like the add instruction), but they are not covered here. The first two instructions in

Table 2.16 load constants onto the stack. For example, ldc.i4.0 pushes zero as a four-byte

integer. The instructions that push constants come in both the long and short versions.

The next example, ldc.i4.s, pushes a 1-byte signed intermediate onto the stack. Similar

instructions to load floats (ldc.r4) and doubles (ldc.r8) are also available.

Internally each method numbers its parameters and instructions that load param-

eters onto the stack and uses these numbers to reference the parameters instead of using

the parameter’s name. For non-instance methods (i.e., static), parameters are numbered

left to right starting at 0. Therefore, the first parameter is numbered 0, the next is 1, then

22

is 2 and so on. For instance methods, the first parameter is numbered 1, the next is 2

and so on. Instance methods start numbering at 1 because parameter number 0 is reserved

for the this pointer. The next example, ldarg.2, loads argument 2 onto the stack. There

are special 1-byte ldarg.0 to ldarg.3 instructions that load arguments with numbers built

into the opcode. There are also short and long version of the ldarg instructions to load

arguments with numbers larger than 3.

Local variables are also numbered starting at 0 where they are declared. The ldloc.s

example loads local variable 0x20 (or 32) onto the stack. The ldloc group of instruction

also has a few instructions that have the local number built in (ldloc.0 to ldloc.3) and short

and long versions of the ldloc instruction. The ldnull instruction loads the null value onto

the stack.

The final example in Table 2.16, ldfld, loads a field onto the stack. The intermediate

value is a 4-byte token. The first byte is a table constant and the other three bytes are the

row number. Table 0x04 is the Field metadata table. Therefore, this example loads the

field represented by row one in the Field metadata table. Similar instructions to store into

local variables, arguments and fields are available also.

Bytes CIL instruction

28 0a000001 call 0xa000001

6f 0a000002 callvirt 0xa000002

27 0a000003 jmp 0xa000003

29 11000006 calli 0x11000006

Table 2.17: Method call examples

Table 2.17 contains instructions used to invoke method calls. There are only four

CIL instructions to invoke methods: call, callvirt, jmp and calli. For all four of these

instructions the execution environment automatically pushes a reference to the variable

23

used to invoke the method if this is an instance or virtual method. This variable is not

checked to see if it is null and thus an exception may be thrown at runtime [43]. A call

may be used to invoke a static method in which no reference is pushed onto the stack.

The intermediate token value associated with the call is an index into the MethodDef or

MethodRef metadata tables. The first example calls the method defined by row one of the

MethodRef table (0x0a). Arguments to the method must be pushed onto the stack before

the method is called. If the method has a return value, it will be on the stack after the call

instruction executes.

The callvirt instruction is used to call instance and virtual, but not static methods.

If this is a call to an instance or virtual method, code is automatically generated for the

callvirt instruction to check if the variable calling this method is null. If this is a virtual

method call, the runtime inspects the variable calling this method to call this method

polymorphically [43]. Parameters and return values are passed on the stack. The second

example, callvirt, invokes the method defined by row two of the MethodRef table.

The jmp instruction pushes no parameters because when it is called because it

inherits the parameters of the caller. Therefore the method being called must have the

same number and types of parameters as the caller [26]. The next example uses the jmp

instruction to call the method specified by row three of the MethodRef table.

For calli instructions, a function pointer to the method that is to be called must

be pushed onto the stack using either the ldftn or ldftnvirt instruction after the method’s

parameters have been pushed. The calli instruction is used to call native code. The token

in the calli instruction describes the signature of the method being called [37]. The final

example uses the calli instruction to call the method that has the signature described in

row 6 of the StandAlongSig table (0x11).

24

2.4 Related Work

After Microsoft released the .NET Framework and its specification in 2001, the company

also released a reference implementation of the CLI called the Shared Source Common In-

termediate Language [48]. The license for this implementation strictly forbids it from being

used commercially, but the source code is available for educational purposes. Microsoft’s

Visual Studio, which is a .NET integrated development environment, ships with a tool called

ildasm that allows the user to view, but not edit .NET assemblies.

Mono is an open source implementation of the .NET Framework which was first re-

leased in 2004 [39]. In 2011, Mono added support for .NET 4.0 and has announced upcoming

support for the current version of .NET 4.5. There is another open source implementation

of the .NET Framework that was started by the Free Software Foundation which is called

DotGNU. However, DotGNU supports an older version of .NET, a new release has been

made available since 2009. Both Mono and DotGNU have the compilers, the .NET Frame-

work Common libraries and the virtual machines needed to run .NET code. Unfortunately,

they are not structured as reusable libraries.

Microsoft Research released a technical overview of .NET in 2000 [27]. There has also

been research in writing compilers for various languages that output .NET assemblies. For

example, compilers have been written for Mercury [14], which is a functional programming

language similar to Haskell and ML, C [20] and Ada [7]. Microsoft Research also released

a paper on how generics were implemented in the .NET Framework [53]. Others have

evaluated the .NET Framework to see if it can be used in real-time systems [54]. Papers

have also been written on validating and sandboxing CIL code for various security reasons

like limiting the impact of running untrusted code [5].

25

With all of this research in the .NET community, it is surprising that little deals with

very little deals with optimizing .NET CIL code. Research has been published about opti-

mizing Java’s intermediate bytecode language [41]. This thesis develops a reusable library

called the Common Language Infrastructure for Research (CLIR) to provide researchers

with the tools to read, write and edit .NET assemblies and a toolset of optimizations,

algorithms, and data structures.

Chapter 3

CLIR: Common Language

Infrastructure for Research

This chapter presents the Common Language Infrastructure for Research (CLIR) developed

as a part of this thesis, which enables low-level research on the Microsoft .NET interme-

diate language. CLIR itself consists of two research components, and a third component

that demonstrates the use and practicality of CLIR. The first research component is the

Common Language Engineering Library (CLEL). CLEL forms the foundation by providing

functionality allowing the reading and writing of low-level .NET assemblies. The second

research component is the Common Language Optimization Toolset (CLOT). CLOT uses

the capabilities of CLEL to provide higher-level functionality targeting code optimization.

This chapter introduces the CLEL and details the application programming interface

(API) available to researchers. Chapter 4 covers the CLOT component and Chapter 5

describes a use of these CLIR components. Figure 3.1 depicts the relationship of these

components.

26

27

Figure 3.1: CLIR overview

3.1 CLEL: Common Language Engineering Library

CLEL

+ CLEL(ICLELReader reader)
+ CLEL(String local path)
+ void WriteAssembly(ICLELWriter writer)
+ Token GetEntryPointToken()
+ List<ClassDescriptor> GetInternalClasses()
+ List<MethodDescriptor> GetMethodDescriptorForClass(Token token)
+ String GetMethodsName(Token token)
+ List<CLELInstruction> GetCodeForMethod(Token token)
+ void SetMethodsCode(MethodDescriptor md, List<CLELInstruction> code, MethodLocalsBlobInfo locals)

Figure 3.2: CLEL class

The Common Language Engineering Library (CLEL) is the foundation layer that

supports .NET language research projects such as optimization. The CLEL provides func-

tionality to read and write assemblies. The CLEL exposes its functionality through the

CLEL class, which is shown in Figure 3.2. A “client,” such as an optimization in CLOT or

the DumpCode utility, instantiates a CLEL object and accesses internals of assembly files

via methods in the CLEL object. The design of the CLEL component follows the facade

design pattern [17] whereby the CLEL class acts as a simpler entry point to a more complex

set of classes. This arrangement is depicted in Figure 3.3.

As is common with the facade pattern design, the CLEL class acts as a type of

wrapper to simplify the interface. Most of the real work is done by the CLELAssembly

28

Figure 3.3: CLEL overview

class, which implements the methods that parse, edit and write .NET assemblies. The CLEL

class validates a client request and then passes it on to a similarly named method in the

CLELAssembly class. The CLEL class API is shown in Figure 3.2 and the CLELAssembly

class is shown in Figure 3.6.

ICLELReader

+ bool IsLittleEndian

+ int ReadByte(ref byte val)
+ int ReadShort(ref short val)
+ int ReadInt(ref int val)
+ int ReadLong(ref long val)
+ int Read(byte [] buffer, int start, int length)
+ void Close()

Figure 3.4: ICLELReader interface

ICLELWriter

+ bool IsLittleEndian

+ void WriteByte(byte val)
+ void WriteShort(short val)
+ void WriteInt(int val)
+ void WriteLong(long val)
+ void Write(byte [] buffer, int start, int length)
+ void Close()

Figure 3.5: ICLELWriter interface

When creating a new CLEL object, the constructor requires an instance of the

ICLELReader interface (see Figure 3.4). This interface defines the low-level methods neces-

sary to read a stream of bytes that comprise a .NET assembly. Typically, this byte stream

comes from a file stored on a local disk. CLEL provides an implementation of the reader

interface, CLELFileReader, for this common usage. However, researchers can easily pro-

vide custom implementations of the interface to read .NET assemblies from other sources

(e.g., via a network web service). This ability to use alternate sources is termed a “de-

29

pendency injection” [13][15] and provides future flexibility without needing to modify the

base classes (i.e., CLEL and CLELAssembly). The ICLELWriter interface works similarly

and CLEL provides a default implementation CLELFileWriter that writes to local files on

disk. Because reading and writing to local disk files is so common, the CLEL class also

provides an even simpler constructor that accepts a filename and internally manages the

CLELFileReader.

Since the .Net assembly file format is an extension of the Windows executable

Portable Executable (PE) file format [37], the fields that are the same in both are kept

in a class called CLELExecutable. The CLELAssembly class inherits from the CLELExe-

cutable class and implements its own text section, which is the significant difference between

PE files and .NET assemblies, using the AssemblyTextSection class. The AssemblyText-

Section contains all the methods needed to get and set all the fields in the various tables

and sections in the .NET assemblies text section.

CLELAssembly

- AssemblyTextSection text

+ CLELAssembly(ICLELReader reader)
+ void Write(ICLELWriter writer)
+ Token GetEntryPointToken()
+ List<ClassDescriptor> GetInternalClasses()
+ List<MethodDescriptor> GetMethodDescriptorForClass(Token token)
+ String GetMethodsName(Token token)
+ List<CLELInstruction> GetCodeForMethod(Token token)
+ void SetMethodsCode(MethodDescriptor md, List<CLELInstruction> code, MethodLocalsBlobInfo locals)

Figure 3.6: CLELAssembly class

The CLELAssembly class contains the method GetEntryPointToken that returns an

internal reference token that is used to locate the Main method in the metadata tables [37].

If the current assembly is a dynamically linked library (DLL) rather than a .NET assembly,

then this method returns null. The Common Language Infrastructure (CLI), which defines

the specification of the .NET assembly file format, uses tokens to locate many objects in

30

its internal metadata tables. The Token class (see Figure 3.7) implements this CLI data

structure and is devised of two pieces of data: a table constant and a row number. The

table constant tells which metadata table the object is in and the row number is used to

locate which row in the table represents the object.

Token

+ byte Table
+ int Row

+ Token(int encoded token)
+ Token(byte table, int row)
+ Token Copy()
+ int GetEncodedToken()

Figure 3.7: Token class

ClassDescriptor

+ int Type

+ ClassDescriptor(int type)
+ byte [] ToBytes()

Figure 3.8: ClassDescriptor class

BuiltInClassDescriptor

+ byte BuiltInType

+ BuiltInClassDescriptor(byte builtin type)
+ byte [] ToBytes()

Figure 3.9: BuiltInType class

MethodDescriptor

+ Token MethodToken
+ List<ParameterDescriptor> Parameters()

+ MethodLocalsBlobInfo Locals()

+ MethodDescriptor(CLELAssembly assembly, Token token)
+ List<CLELInstruction> GetMethodsCode()
+ void SetMethodsCode(List<CLELInstruction> code, MethodLocalsBlobInfo locals)

Figure 3.10: MethodDescriptor class

The GetInternalClasses method of the CLELAssembly class returns a list of all of the

classes defined in the current .NET assembly. Each member of this list is a ClassDescriptor

(see Figure 3.8). There are many different types of classes supported in .NET and the

type field in the ClassDescriptor is used to distinguish between each type. Some of these

types are built-in types (like int, float, and bool), arrays, structures, classes and generic

classes. Each of these different .NET types are represented by CLEL classes that inherit

from ClassDescriptor. For example, the BuiltInType class (see Figure 3.9) represents the

built-in types mentioned earlier (int, float, etc.).

31

The GetMethodDescriptorsForClass method of the CLELAssembly class returns a

list of all of the methods for the class indicated by the token parameter. Each method in

the list is represented by a MethodDescriptor object (see Figure 3.10). Using a Method-

Descriptor object, researchers can retrieve the code, set the code, get the parameters, and

set the parameters for that associated method. The GetCodeForMethod method, in the

CLELAssembly API, returns the code for the given MethodDescriptor as a list of CLELIn-

struction objects. The CLELInstruction class (see Figure 3.11) serves as a parent class for

each of the instructions provided by CLEL. Thus, each instruction in CLI is implemented

by a class that inherits from CLELInstruction, setting the appropriate opcode and imple-

menting any extra fields the instruction needs. The list of all of the opcodes in CLI is

implemented as static constants in the CLELOpcode class. The GetBytes method of the

abstract CLELInstruction class is overridden by the concrete child class and returns the

bytes that represent that specific instruction in the .NET assembly.

CLELInstruction

+ byte Opcode
+ int Length()

+ CLELInstruction(byte opcode)
+ byte [] GetBytes(bool little endian)

Figure 3.11: CLELInstruction class

To change the code of a method in the .NET assembly, CLELAssembly provides

the SetMethodsCode method. Parameters to the SetMethodsCode method indicate which

.NET assembly method to update, the new CLI code, and a MethodLocalsBlobInfo object

that represents the new local variable information.

32

3.2 CLOT: Common Language Optimization Toolset

The Common Language Engineering Library (CLEL) described in the preceding section

provides the foundational capabilities of reading and writing .NET assemblies. Researchers

generally have higher-level ambitions including, for example, performing a code transforma-

tion that will improve program performance. Such code transformations are typically called

optimizations. The CLIR provides the Common Language Optimization Toolset (CLOT)

as a collection of classes that implement various optimizations and optimization utilities.

Researchers can easily add new optimizations and new utilities to the CLOT.

opt opt.lib
IOptimization ClassIFE
OptimizationConfiguration ConvergePassBIR

OnePassBIR
PeepholeBIR
LocalCP

opt.Analysis.Graph opt.Analysis.Set opt.Analysis.Branch
Graph BitSet BranchTable
GraphNode GenKill
GraphArc ReachingDefinitions
ControlFlowGraph
CallGraph

Figure 3.12: CLOT namespaces overview

CLOT consists of a namespace called opt with two nested namespaces called lib

and Analysis that organize the constituent classes. Figure 3.12 gives a visual overview of

the namespaces and the classes contained in each namespace in CLOT. The opt namespace

itself contains general purpose optimization classes and interfaces, such as IOptimization

described below. The opt.lib namespace contains concrete optimizations, such as the vari-

ous versions of Branch Instruction Replacement (BIR), whose implementation is described

in Chapter 4. The opt.Analysis namespace provides utility data structures and algorithms

commonly used by many optimizations. The opt.Analysis namespace is further subdivided

into three namespaces: Branch, Set, and Graph. The opt.Analysis.Graph namespace con-

33

tains graph-related data structures specifically. For example, there is an abstract Graph

class and a concrete ControlFlowGraph class. The opt.Analysis.Set namespace contains

classes used to implement set theoretic algorithms such as GenKill and ReachingDefinitions

[3]. The opt.Analysis.Branch namespace contains utility classes for maintaining low-level

control flow and branch information.

IOptimization

+ String Name
+ String Key
+ String Description

+ void DoOptimization(CLEL clel,CLELLogger log)

Figure 3.13: IOptimization interface

Every CLOT optimization must implement the IOptimization interface, which is

shown in Figure 3.13. Three of the required methods extract identification information

about the optimization, and invoking the DoOptimization method initiates execution of

the optimization. Notice that this method requires a CLEL object that encapsulates the

.NET assembly that is the target of the optimization.

OptimizationConfiguration

- String path
- Dictionary<String,String> config

+ OptimizationConfiguration(String path)
+ String GetConfigValue(String name)

Figure 3.14: OptimizationConfiguration class

Each optimization can optionally have a configuration file represented by the Op-

timizationConfiguration class (Figure 3.14). The OptimizationConfiguration constructor

takes a path to an xml file containing configuration name and value pairs. The configu-

ration file allows the researcher to tweak an optimization without changing code. It is up

to the person writing the optimization to load their own configuration file and to man-

age it. For example, the method inlining optimization can result in an increase in code

size so a threshold can be established to control the amount of inlining performed. This

34

threshold can be more easily reconfigured using the configuration file. Therefore the Opti-

mizationConfiguration class is used by the optimizations that implement the IOptimization

interface.

When the optimization is called using the DoOptimization method, a shared CLEL-

Logger object is passed in along with the CLEL object, which represents the current as-

sembly. The CLELLogger object is opened by the OptimizationController and can be used

to write any data that might be useful later. This log could be used when debugging the

optimization or it could be used to keep track of statistics like how often the optimization

was applied to the code.

The opt.Graph namespace contains very useful high-level abstractions that deserve

a more detailed description. The CallGraph and ControlFlowGraph classes are concrete

classes based on the generic Graph class. The CallGraph represents the entire program,

with the methods as nodes and method calling instructions as the arcs in the graph. The

ControlFlowGraph represents a single method with basic blocks of single-entry-single-exit

code as nodes. An arc is added between two nodes if a branch ends at one block and goes

to the second block [3] [47].

The graph data structures employ the Visitor Design Pattern [42], which allows

a researcher to easily inject node-specific processing as the graph is traversed. In order

to traverse the CallGraph and ControlFlowGraph, the CallGraphVisitor and ControlFlow-

GraphVisitor classes are used. The CallGraphVisitor class, which takes the CallGraph to

traverse as a constructor parameter, has an accept method that takes one parameter of

IGraphVisit type. The ControlFlowGraphVisitor, which takes a ControlFlowGraph as a

constructor parameter, has a similar accept method. The IGraphVisit interface defines a

single method to implement, which is the visit method that only takes a GraphNode as a

35

parameter. This GraphNode is the current node that is being visited as the visitor classes

traverse the graph. This way the optimization researcher does not need to write these data

structures, rather they need only to implement the IGraphVisit interface with a class that

contains the specific logic they need for their optimization.

Three optimizations are provided by default with CLOT: branch instruction re-

placement, constant propagation, and method inlining. These optimizations are described

in detail in Chapter 4.

3.3 User Applications

CLEL forms the foundation of reading and writing .NET assemblies. A user application

can directly make use of CLEL functionality. The CLOT sits on top of the CLEL and

provides higher-level functionality related to optimizations. This section describes two user

applications: DumpCode and the Optimization Scheduling Tool (OST).

A tool called DumpCode was written to help examine and debug assemblies as CLEL

and CLOT were written. DumpCode is a user application that directly accesses CLEL

functionality. Similar to the Linux objdump tool, which prints an executables assembly

code, DumpCode prints the CIL code in an assembly in a more readable form. DumpCode

was built using CLEL as a foundation to parse the assembly and return the code to print.

DumpCode then prints the namespace, class name and string representation of each CIL

instruction. As CLEL was written, DumpCode was used to verify that CLEL was parsing

and writing the CIL in the assembly correctly. While writing the optimizations covered

in this thesis, DumpCode was also used to verify that the transformations applied to the

CIL code were correct. Other than the uses for this thesis, DumpCode could be helpful to

anyone needing to view the CIL code in an assembly.

36

The Optimization Scheduling Tool is a much larger effort providing a user the abil-

ity to run optimizations in a variety of different orderings. Aho et al. [1] demonstrate

that optimization orderings do in fact alter the resulting code. Thus, being able to easily

reconfigure tests is crucial for optimization researchers. The OST is a graphical utility that

achieves this reconfiguration.

OptimizationController

- Dictionary<OptimizationKey,Type> opts
- CLEL clel
- CLELLogger log

+ OptimizationController()
+ void OpenAssembly(String path)
+ bool IsAssemblySet()
+ void SaveAssembly(String path)
+ List<OptimizationKey> GetOptimizationNames()
+ void DoOptimization(String key)

Figure 3.15: OptimizationController class

The OptimizationController class is shown in Figure 3.15. This class scans the as-

semblies in the opt.lib directory and uses reflection to examine every class contained there.

If a class has implemented the IOptimization interface then the OST recognizes this as an

available optimization. Thus, the determination of available optimizations occurs dynami-

cally. After writing a new optimization, a researcher only needs to put the optimization class

file into the correct folder and OST will automatically find it and allow it to be scheduled.

In particular, OST does not need rebuilding for each optimization written. Reflection also

allows OST to access the optimization name and description and to initiate the optimization

execution (by calling the DoOptimization method).

When OST starts, a list of all available optimizations are loaded into the leftmost

text box shown in Figure 3.16. The text box on the right lists what optimizations will be run

and in what order. The user can add optimizations from the left text box by selecting one

and clicking the button with the plus on it. To delete optimizations, select the optimization

37

Figure 3.16: Optimization Scheduling Tool

from the right text box and click the minus button. The optimizations are performed in

order top to bottom. The up and down arrows on the far right can be used to reorder them.

The file menu has an open item that allows the user to select the .NET assembly

to be optimized. All of the optimizations in the right text box will be applied when the

run item is chosen from the file menu. The save item in the file menu allows the optimized

.NET file to be saved to disk.

OptimizationKey

+ String Name
+ String Key
+ String Description

+ OptimizationKey(String name,String key,String description)

Figure 3.17: OptimizationKey class

In order to populate the text box of available optimizations, the GetOptimization-

Names method is called and it returns a List of OptimizationKeys. Each OptimizationKey

represents an optimization that is available to run. The OptimizationKey class (Figure 3.17)

contains information like the name of the optimization, a lookup key and a description.

The OpenAssembly method is called within OST to load an assembly. The IsAssemblySet

returns true or false depending on whether there is currently an assembly loaded. The

DoOptimization method is used to run each optimization selected by the user.

Chapter 4

Optimizations Background and

Implementation

4.1 Optimization Overview and Goals

Three different optimizations were chosen to demonstrate the usefulness of the Common

Language Infrastructure for Research (CLIR) and by extension the Common Language En-

gineering Library (CLEL). The goal is to show that a wide range of optimizations can be

developed using the Common Language Optimizing Toolset (CLOT) components. Opti-

mizations share the algorithms and data structure contained in CLOT and also the ability

to read and write .NET assemblies by using the CLEL component.

The three optimizations selected were Branch Instruction Replacement (BIR), Con-

stant Propagation (CP) and Method Inlining. Branch Instruction Replacement is a type

of peephole optimization that replaces one or more branch instructions with equivalent

instructions that are more efficient. Three variations of BIR, which are called Peephole,

Converge and One Pass BIR, are presented in Section 4.2. Constant Propagation replaces

38

39

a value in an expression with a constant value. Section 4.3 discusses the CP optimiza-

tion. Method Inlining attempts to improve performance by replacing a method call with

the body of the called method, thus removing the overhead of calling a method. Method

Inlining uses interprocedural analysis to determine which methods to inline and is presented

in Section 4.4.

4.2 Branch Instruction Replacement

4.2.1 Peephole Optimization Background

A peephole optimization is performed by examining a sliding window, which is called a

peephole, of instructions to see if any of them can be replaced with a more efficient sequence

of instructions [1]. This efficiency could be because the new instructions use fewer bytes in

the code stream, take fewer cycles to execute on the CPU, or because the new instructions

use less power when executed by the CPU. This optimization can be included as part of

the compilation process or can be done independently after the code generation stage.

1) x = x - 0
2) x = x * 1
3) x = x * 2

Figure 4.1: Peephole examples

There are many types of peephole optimizations available. A common one is called

Algebraic Simplification and Reduction of Strength [1]. Figure 4.1 has a few examples of

these types of peephole optimization opportunities. If instructions like number 1 or 2 in

Figure 4.1 are seen as the peephole slides through the code, they can be removed because

they have no effect on the value of the variable x since subtracting zero or multiplying

by one does not change the value of x. This algebraic simplification reduces the number of

instructions executed as well as memory consumption because the code size decreased. Line

40

3 from Figure 4.1 is an example of Reduction of Strength in which an expensive instruction

is replaced with a less expensive, but equivalent instruction. Since multiplying a value by

2 is the same as shifting it’s binary value left by one bit, the instruction at line 3 can be

rewritten as left shifting x by one. Typically, CPU architectures can shift a value faster

then multiplying a value. Therefore the result will be the same, but execute faster.

Peephole optimizations examine the code in the peephole; no other code is consid-

ered. The peephole size can vary to examine one or several instructions at a time, but only

those instructions are analyzed at that time. There have been several strategies to find

opportunities for optimization in the peephole. One strategy converts the target assembly

code in the peephole into a string, represents the peephole optimization as a regular ex-

pression and applies the regular expression to the code in the peephole [46]. By using a

regular expression library, new peephole optimizations can be added dynamically with only

a modest overhead.

Another approach is to have an input specification that describes both the code

to find and the replacement code [19]. The input is turned into a finite state machine

(FSM) that models patterns as a graph with states and arcs between the states representing

transitions from one state to another. Each FSM is applied to the peephole as it slides

through the code. A specific instruction could cause the transition from one state to another.

One of the states represents successfully finding the optimization pattern, in which case the

FSM triggers a replacement in the code.

4.2.2 Branch Instruction Replacement Implementation

Recall from Chapter 2 that the Common Intermediate Language (CIL) is the intermediate

code resulting from program compilation. CIL has two groups of instructions for branches:

41

short and long branches. The short version has a 1-byte opcode and one byte for a numeric

offset. The offset indicates how far in the code to branch. The long version also has one

byte for the opcode, but uses four bytes for the offset. Sometimes a .NET compiler will

emit a long branch when a short branch will suffice. For example, the br instruction, which

is an unconditional long branch, is unnecessary if the offset can fit within one byte, a range

of -128 to 127. See Figure 4.2 for an example of BIR.

br

0x38

10

0x0000000a
−→ br.s

0x2b

10

0x0a

Figure 4.2: BIR example

The Branch Instruction Replacement (BIR) optimization was devised to replace long

branches that don’t need four bytes to represent the offset. Since the 10 (0x0a) in Figure 4.2

can be represented in one byte, the br instruction was converted to a br.s instruction, which

is the short version of the unconditional br branch. By doing this instruction replacement,

the code size decreased by three bytes because a 5-byte instruction was replaced by a 2-byte

instruction.

for each class c
for each method m in c

for each instruction i in m
if i is a long branch with offset between -128 and 127

replace i with equivalent short branch with same offset

Figure 4.3: BIR algorithm (version 1)

The implementation of BIR must first find the branch replacement possibilities. A

first attempt might look something like the pseudocode in Figure 4.3. This algorithm is a

peephole optimization with the peephole window size being one instruction.

Unfortunately the simple algorithm in Figure 4.3 ignores the fact that changing the

size of a branch impacts the offset with other branches. Consider the code fragment in

Figure 4.4. If BIR is applied to the br 15 instruction then this instruction uses three bytes

42

blt 160
..........
br 15
..........
//destination of blt instruction

Figure 4.4: Branch body

less than before. This causes the subsequent code to effectively “move up” from where it

was. Thus the destination of the blt instruction is now only 157 bytes away instead of

160. An attempt to fix this problem could be to increase the size of the peephole window

perhaps, but the blt 160 instruction could always be outside this window.

for each class c
for each method m in c

O(i)
for each instruction i in m

if branch instruction
add to branch info table

O(b2)

for each branch b1 in branch info table
for each branch b2 in branch info table

if b2 is between b1 start and end offset
add b1 to b2 over dictionary

O(b2)

for each branch b3 in branch info table
if b3 is a long branch with offset between -128 and 127

get list of branches that branch over b3 over list from over dictionary
for each branch b4 in over list

update offset of b4

O(cm(i+b2+b2)) = O(cmi+cmb2+cmb2) = O(cmi+cmb2)

Figure 4.5: Peephole BIR algorithm (version 1.1)

A correct BIR algorithm can be seen in Figure 4.5. Before the instructions of a

method are processed, a branch information table is created to keep track of the method’s

branches. Because of this persistent data, BIR is no longer technically a peephole opti-

mization. By making the changes in version 1.1 of the BIR algorithm, the algorithm is

no longer a pure peephole optimization because now instructions outside of the peephole

window need to be examined. This table records the location in the code of each branch,

its offset into the code, and what type of branch it is. This branch table is then processed

43

to create a table called over which maps each branch to a list of all the other branches that

branch over it. In the Figure 4.4 example, the br instruction maps to the blt instruction.

Therefore, when the br instruction is changed to a br.s instruction, we know to update blt’s

offset.

A theoretical performance analysis of version 1.1 of the BIR algorithm in Table 4.5

results in O(cmi+ cmb2) where c is the number of classes, m is the number of methods and

b is the number of branches in the input code. The cmi factor is fixed because every BIR

implementation needs to examine each instruction in the input at least once before it can

decide if it is replaceable or not. The second factor, cmb2, is the true cost of this approach.

br 128
..........
blt 18
..........
//destination of br instruction

Figure 4.6: Branch body, with missed replacement

for each class c
for each method m in c

O(i)
for each instruction i in m

if branch instruction
add to branch info table

O(b2)

for each branch b1 in branch info table
for each branch b2 in branch info table

if b2 is between b1 start and end offset
add b1 to b2 over dictionary

O(b3)

do
changed = false
for each branch b3 in branch info table

if b3 is a long branch with offset between -128 and 127
changed = true
replace with equivalent short branch with same offset
get list of branches that branch over b3 over list from over dictionary
for each branch b4 in over list

update offset of b4
while(changed)

O(cm(i+b2+b3)) = O(cmi+cmb2+cmb3) = O(cmb3)

Figure 4.7: Converge BIR algorithm (version 2)

44

It should be noted that it is possible for version 1.1 of the BIR algorithm to miss

some replacement opportunities. Consider the code fragment in Figure 4.6. Since version 1.1

of the algorithm only makes one pass through the code, a branch replacement opportunity

will be missed. The br instruction will be considered to be replaced and will not be because

128 is greater than 127, which is the maximum values that can be stored in a 1-byte offset.

Then the blt instruction will be considered and it will be replaced causing the offset of the br

instruction to be updated to 125. Now the br instruction is replaceable, but the algorithm

only makes one pass through the code and the br was already rejected for replacement.

BIR version 2 (see Figure 4.7) was developed to capture these missed replacement

opportunities. Basically, the version 1.1 algorithm is repeated multiple times until no branch

changes occur. This change ensures that all of the BIR replacement opportunities possible

were found. Unfortunately, the worst case theoretical analysis is now O(cmb3). The first

factor, cmi, is the same fixed factor like in version 1.1 of the algorithm. The second factor,

cmb2, is also the same as version 1.1. The final factor, cmb3, is caused by adding the do

while loop that continues to make passes through the code until it makes a pass through

the code where no branches were replaced. In the case where every branch is replaceable

eventually and only one branch is replaced with each pass, the do while loop will make b

passes through the code doing cmb2 with each pass, giving a running time of cmb3. This

version of the BIR algorithm is called Converge BIR.

Another version of the algorithm was developed to try and find a better way to

process the branches in a method so that only one pass through the code is needed and no

missed replacement opportunities occur. This version of the algorithm is called One Pass

BIR. Consider Figure 4.6 again, the missed opportunity could have been avoided if the blt

instruction was processed before the br instruction. Then the br instruction’s offset would

45

for each class c
for each method m in c

O(i)
for each instruction i in m

if branch instruction
add to branch info table

O(b2)

for each branch b1 in branch info table
for each branch b2 in branch info table

if b2 is between b1 start and end offset
add b1 to b2 over dictionary
add b2 to b1 inner list in priority queue

O(b2log b)

while(priority queue not empty)
get and remove top of priority queue, which has branch b3 and inner list
if b3 is a long branch with offset between -128 and 127

replace with equivalent short branch with same offset
get list of branches that branch over b3 over list from over dictionary
for each branch b4 in over list

update offset of b4
for each branch list over list2 in priority queue

for each branch b5 in over list2
if b5 equals b3

remove b5 from over list2

O(cm(i+b2+b2log b)) = O(cmi+cmb2+cmb2log b) = O(cmb2log b)

Figure 4.8: One Pass BIR algorithm (version 3)

be updated to 125 before considered for replacement. In general, if all the “inner” branches

of an “outer” branch were processed before that “outer” branch was processed, then each

branch could be processed a single time. Pseudocode for version 3 of the algorithm is shown

in Figure 4.8. A new list called inner maps the “inner” branches to its “outer” branches.

br 25
........
blt 10
........
//destination of blt
........
//destination of br

br 25 blt 10
blt 10

beq 8

........
beq 8
........
//destination of beq
........

Figure 4.9: Branch lists example

Figure 4.8 contains pseudocode for this third version. First, an information table

is created that contains a row for each branch in the code. This row contains the type of

46

branch it is, the index into the code list the branch is at, the byte offset into the code’s

instruction stream where the branch is and the byte offset into the code’s instruction stream

of where the branch’s destination is. Next a list is built for each branch in the method

using this information table; for example, see Figure 4.9. This list contains all other branch

instructions that this current branch jumps over. Since the br instruction jumps over the

blt instruction, the blt instruction is added to br’s list. Once these lists are built, they are

stored in a priority queue sorted by the length of the list. Thus the top of the priority queue

contains the list with the smallest number of items in the list. The while loop checks if the

priority queue is empty. If not, the next branch is processed and removed from the top of

the priority queue.

Since there is always an inner most branch at any point (assuming the code contains

at least one branch), there will be a list that is empty because this inner most branch does

not branch over anything. Since a priority queue is used, this empty list will be on the top

of the priority queue. We also know that the offset it has will not change because there are

no branches in its body to examine. Therefore, we can now examine this branch’s offset

to see if it can be replaced or not without fear that whether it can be replaced or not will

change in the future.

The next block in the pseudocode checks if the branch removed from the top of the

priority queue is replaceable. If so, the branch is replaced and all other branches affected

are updated. The next for loop removes the found branch from the other lists in the

dictionary, so that the next inner most branch can be found and processed. After all of the

branches have been examined, the while loop ends. By using a priority queue to process

each branch only once, the theoretical performance analysis was reduced to O(cmb2log b)

because retrieving and removing the top of the priority queue is done in log b.

47

4.3 Constant Propagation

4.3.1 Constant Propagation Background

Another class of optimizations can be solved using set theory, which is a branch of math-

ematics that studies groups of objects called sets and the operations that can be done on

sets. One optimization that can be solved with the help of set theory is constant propa-

gation (CP). CP replaces an expression with a constant value if it can be proved that the

expression is always the same value at this specific point in the program [1].

int a = 5;
int b = 3;
final int c = 2;
while(b < 100)
{

b = a + b + c;
}
1) Before

int a = 5;
int b = 3;
final int c = 2;
while(b < 100)
{

b = 5 + b + 2;
}
2) After

Figure 4.10: Constant propagation example

Some programming languages, like Java for example, have a keyword that can be

used to mark variables or fields as constant. It is up to the compiler or interpreter to

make sure that variables or fields marked with this keyword are not changed once they

are initialized. In Java, this keyword is final [4]. Therefore, any variable or field in Java

marked with final can be be propagated without any analysis [8]. However, consider the

use of the variable a in Figure 4.10. The variable is assigned before the while loop and is

never reassigned in the loop, so its value does not change during the execution of the loop.

Therefore, anywhere the value of the variable a is used, it can be replaced by the constant

5.

CP not only improves code efficiency, but can also produce opportunities for other

optimizations. For example, b = 5 + b + 2 uses two addition operations, but this can

48

int c = 10;
int d = 4;
int e = c + d - 11;

(1)

int c = 10;
int d = 4;
int e = 10 + 4 - 11;

(2)
int e = 3;

(3)

Figure 4.11: Constant propagation can uncover other optimization opportunities

be replaced with b = b + 7 which only executes one addition operation. More generally,

constant folding replaces expressions consisting only of literal constants with the expression’s

calculated value.

Dead code elimination is an optimization that removes unnecessary code [1]. In

Figure 4.11, CP is applied to the code fragment in column 1 resulting in the code in 2.

Then constant folding replaces “10 + 4 - 11” with the value 3. Since the variables c and

e no longer used in any statements, the initialization statements can be removed by dead

code elimination resulting in the code in column 3.

One way CP can be implemented is by calculating reaching definitions using data-

flow analysis, which is a technique for gathering information about the values in a program.

Reaching definitions describe which definitions of each variable reach each point in a pro-

gram [1]. A definition is created by an instruction n (gen[n]) when a variable is assigned

and that same definition is killed (kill[m]) at an instruction m that reassigns a variable.

This analysis shows the lifetime of a value in a variable and lets us know if an expression

can be replaced or not.

Figure 4.12: Reaching definitions algorithm

Figure 4.12 shows the algorithm for calculating reaching definitions [3]. In the

algorithm, in, out, gen and kill are sets. The variables n and p are code instructions.

The expression pred[n] is a set of statements that precede n during execution. The in

49

and out sets are initially set to empty. The in and out sets in Figure 4.12 are computed

for each statement n in the code repeatedly until there are no changes to any of the sets.

The definitions that flow into a statement are the union of the reaching definitions of all

statements that precede it. These preceding statements also include any definitions coming

from branches that can be taken. The reaching definitions coming out of a statement are

the reaching definitions coming in to it with the definitions that are killed by the current

statement removed and then unioned with the definitions that are generated by the current

statement. By doing this, the out reaching definition set only contains definitions that

reach past the statement. If only one definition of a variable reaches a statement, then that

variable can be replaced by that definition because it is impossible for it to have any other

value, no matter what path is taken in the code during execution.

In order to calculate reaching definitions, a control flow graph is needed. A control

flow graph [10] is a graph where the nodes represent the basic blocks of code. A basic

block is a single-entry, single-exit block of continuous code. A method can be broken into

basic blocks by separating the code where either a branch is located or the target site of a

branch. These basic blocks are joined with arcs that represent the branches that separate

them. The reaching definitions algorithm is applied to each basic block as the control flow

graph is traversed.

The gen and kill sets [3] are also needed for the Reaching Algorithm. For each

statement in the code gen and kill sets are calculated. A statement is added to the gen set

for each assignment statement because it is said to generate the value that is being assigned

to the variable at that point in the code. Items would be added to the kill set for all other

statements in the code that assign to the same variable that was assigned to in the current

statement. If a statement does not assign a value, it’s gen and kill sets are empty.

50

Gen Kill
1) a = 1; 1 3,5
2) b = 1; 2 4
3) a = a + b; 3 1,5
4) b = a + a; 4 2
5) a = b + b; 5 1,3

Figure 4.13: A gen and kill set example

Figure 4.13 shows five example code statements and their respective gen and kill

sets. Statement 1 generates a value assigned to variable a, which is added to the gen set

of the statement. Any other definition of a is killed, so the definitions at statement 3 and

5 are added to the kill set of statement 1. These same rules are used to calculate the gen

and kill sets for the rest of the statements in the example.

Once the reaching definitions information is calculated, constant propagation can

be applied. If a statement uses a variable that has a single definition reaching the statement

then the variable can be replaced with that definition.

4.3.2 Constant Propagation Implementation

This section covers the implementation of constant propagation (CP) using the CLOT

optimization framework and CLEL. In order to implement the reaching definitions described

in the previous subsection, a class called GenKill was written to calculate the gen and kill

sets. The GenKill class is part of the opt.Analysis.Set namespace in CLOT. Since the

reaching definitions algorithm contains set theoretic operations like union and intersection,

a BitSet class was created. This class represents a set as a series of bits. If an item is

in the set, the bit is set. If not, the bit is not set. This enables the implementation of

union efficiently by applying the binary “or” operation on the bits in the first set with the

bits in the second set. Similarly, intersection was implemented by using the binary “and”

operation.

51

c = a + b;

ldloc.0
ldloc.1
add
stloc.2

Figure 4.14: Example assignment statement decomposed

For calculating the gen and kill sets, a BitSet is assigned to each local variable in

the code being analyzed. This BitSet holds the indexes of the instructions that assign the

local variable. The Common Intermediate Language (CIL), which is the instruction set of

the .NET Framework, has several instructions that can store a value in a local variable.

The types and formats of store CIL instructions were covered in Section 2.3. For example,

an assignment statement and the potential CIL is shown in Figure 4.14. Variables a and b

are loaded onto the stack, the top two items on the stack are added and the result is stored

in c. The code is scanned for store CIL instructions. For each store instruction, if it stores

a value into a local variable, the BitSet for this local variable has the index of this CIL store

instruction added to its BitSet. For the example in Figure 4.14, the BitSet for the variable

c will set the bit for the index of that stloc instruction.

The other data structure needed for CP is a control flow graph. A class called

ControlFlowGraph is provided in the opt.Analysis.Graph namespace. The nodes in the

control flow graph represent the basic blocks from the input code. The arcs in the control

flow graph represent branches that connect the basic blocks. A ControlFlowGraphVisitor

class is provided to iterate throught the control flow graph and visit each node.

A class called ReachingDefinitions, which is in the opt.Analysis.Set namespace, im-

plements the reaching definitions algorithm described in 4.3.1. The gen and kill sets are

calculated and then the control flow graph is constructed before both are passed to the

ReachingDefinitions class. Each instruction in the input code is assigned both an in and

an out set that are initially empty. The reaching definitions algorithm is applied to each

52

node in the control flow graph until the in and out sets converge to a solution; that is, until

there are no changes to the sets.

1) ldc.i4 5 // load constant 5
2) stloc.0 // assign a
3) ldc.i4.3 // load constant 3
4) stloc.1 // assign b
5) ldc.i4 2 // load constant 2
6) stloc.2 // assign c
7) br 6 // branch to conditional
8) ldloc.0 // load a
9) ldloc.1 // load b
10) add // add top two items on stack
11) ldloc.2 // load c
12) add // add top two items on stack
13) stloc.1 // store result in b
14) ldloc.1 // load b
15) ldc.i4.s 100 // load constant 100
16) blt -14 // if less than branch to top of while loop

Figure 4.15: Constant propagation example

Once the reaching definitions information has been calculated, it can now be deter-

mined if any constants can be propagated. At each instruction that loads a local variable,

it is examined to see if a constant can be propagated to it for this variable. The in set

for that instruction is examined to identify the definitions of the local variable that reach

that instruction. If all the definitions reaching this load instruction store the same constant

value then this value can be propagated to the current load instruction.

The CIL code in Figure 4.15 comes from the code fragment in Figure 4.10 shown

earlier. It was determined that the value of 5 assigned to the variable a can be propagated

to the statement inside the while loop because the variable a was never redefined anywhere

else after it was assigned. When the ldloc.0 instruction at line 6 is examined, the reaching

definitions information indicates that only one definition of a from line 2 reaches line 6 and

thus this value at line 2 may be propagated. Recall that CIL is run on a stack-based virtual

machine, so the store instruction on line 2 is storing a constant value from the top of the

stack into the variable a. Thus, in this example the ldloc.0 instruction at line 6, which

53

loads the value of a onto the stack, is replaced with an ldc.i4.5 instruction, which loads the

constant 5 onto the stack and ultimately into the variable a created by line 2.

The value assigned to the variable b in line 4 cannot be propagated to the statement

at line 10 in the while loop because two definitions of the variable b reach this statement,

one from line 4 and one from the stloc.1 at line 9 in the body of the while loop. Since

two definitions reach the instruction at line 10 and one is not a constant, no propagation is

possible here.

4.4 Method Inlining

4.4.1 Method Inlining Background

The last optimization implemented was Method Inlining. Method inlining replaces a method

call instruction with the body of the called method [1]. In assembly code, a method call

consists of many “setup” instructions including saving registers and loading parameters

into registers. The “setup” code is followed by a jump or branch instruction that transfers

control to the called method [10]. This is followed by “teardown” code that handles any

return value and restores registers to their state before the method call. This optimization

removes the overhead of method “setup” and “teardown,” which results in fewer instruc-

tions to execute. Notice that while the “setup” and “teardown” code are removed, the

instructions of the called method’s body are inserted. Thus, generally the code size of the

method containing the original call increases. For this reason, smaller methods are typically

selected as candidates to inline. Method inlining can also expose opportunities for other

optimizations, like CP.

54

The big question is how to choose which methods to inline. Interprocedual analysis

is the process of gathering information about the program to help guide the optimization

[47]. This analysis can come in two flavors: static and dynamic. Static program analysis is

the process of analyzing the program and how variables and data are used without running

the program. A call graph models the calling structure of a program by having methods as

nodes and call instructions as arcs. Once the call graph is created, it can be traversed and

the smallest methods can be inlined [49].

Some disadvantages of method inlining are code bloat, instruction cache misses and

increase pressure on register allocation [10]. The code bloat causes increased memory usage.

In order to improve performance a CPU can have an I-cache to store commonly executed

instructions. As the code size of a method increases, it may cause I-cache thrashing as

commonly executed instructions are evicted from the cache. This causes the CPU to have

to refetch the instruction from main memory, which is slower than the I-cache.

During register allocation, it is decided which local variables will be kept in which

registers. Keeping a local variable in a register is desired because if they are not kept in a

register, they are stored on the stack. Retrieving a variable from the stack is slower than

if it had been kept in a register. Therefore, as more methods are inlined, potentially the

number of local variables in a method could increase making more and more of the local

variables spill onto the stack. Using the number of local variables a method has to decide if

it should be inlined or not is another statistic that can guide static analysis and used [11].

Thus the number of local variables within a method can also be used to help determine

whether a method should be inlined.

Dynamic program analysis collects statistics about the program as it executes to

better inform the optimization process. Several studies have been done using such statistics

55

when inling methods in Java [21][6]. During several sample executions of the program,

counts can be collected for how many times each method was executed. These counts can

be used to help inform what methods to inline.

Another problem arises with Object-Oriented Programming (OOP) languages like

Java and .Net languages like C# and Visual Basic .NET. OOP languages use permission

keywords (e.g., private) to hide methods and fields from the outside. If a method in one class

tries to inline a method in another class, there could be access problems. The callee could

access private methods or fields in its class that will not be accessible in the caller’s class.

To get around this, the entire object can be inlined. All of the callee’s methods are inlined

and a copy of any fields in the callee are copied into the caller. Wimmer and Mossenbock

investigated object inlining within the Java virtual machine [52]. Since the implementation

inlined the methods at runtime, it could select the methods to inline based on I-cache

performance. The rest of this section will cover how method inlining was implemented

using the CLOT optimization framework and CLEL.

4.4.2 Method Inlining Implementation

The Common Intermediate Language (CIL) has four instructions to invoke a method: call,

calli, callvirt and jmp (see Section 2.3). If the method being invoked in CIL is an instance

method, the this pointer is pushed onto the stack first. The parameters are then pushed

onto the stack. The next instruction is the method call. If there is a return value, it will

be on the stack after the method invocation.

1) Not a constructor
2) Caller and callee must be part of the same class
3) Not a method in an interface
4) Not a polymorphic method
5) Fits under the code growth restriction

Figure 4.16: Rules for method inlining

56

The first step in implementating method inlining is the choice of an algorithm that

selects the methods to inline. For this thesis, a greedy algorithm was chosen. A call graph

is created from the input code where each method is a node in the call graph. Directed arcs

are added to the call graph between two nodes to represent when a method is called. The

call graph nodes are traversed and if a node passes the five rules shown in Figure 4.16, it is

inlined. First, the method cannot be a constructor. The reason for not inlining constructors

is that CLI virtual machines do not handle constructors the same way as other methods. If

a constructor is inlined, the object might not be created properly.

Second, the caller and the callee must be part of the same class. This restriction

avoids the access problems mentioned earlier in Section 4.4.1. This restriction also implies

that if the caller and callee are in different assemblies, they will also not be a candidate

for inlining. Third, the method to inline cannot be part of an interface because interface

methods have no implementation. To fulfill this restriction, only methods whose code size

is greater than zero are considered for inlining.

The fourth rule is that polymorphic method calls are not inlined. Polymorphic

method calls are dynamically dispatched based on the type of the variable calling the

method. Since inlining is done prior to execution, inlining a polymorphic method could

create the situation where the wrong method was inlined.

The method inlining optimization uses a configuration file. This file lets the user

set the percentage of code growth to allow before the method inlining algorithm stops. The

fifth and final rule is the method to inline must be the smallest method found. If the method

to inline passes all of these restrictions, it is inlined. If a method is not found that fits all of

these restrictions, the method inlining optimization is completed. Additional code analysis

could be performed to relax these restrictions, but this is our starting point.

57

To promote reuse, CLOT separates the decision of whether to inline or not from

the class that does the actual inlining. The inlining is done by the MethodInline class in

the opt.Tools.Methods namespace. The MethodInline class contains a method called Inline.

It is passed the caller and callee’s MethodDescriptors, which represent the two methods,

the caller and callee code and the index of the call instruction in the caller to inline. By

abstracting out the method inlining to a separate class, it can be reused by any optimization.

A few details regarding the new inlined code are in order. Normally, a called

method’s formal parameters are an alias to the callee’s arguments. The Inline method

removes the aliasing of the callee’s parameters. For instance, a local variable in the caller

may be passed into the callee’s method argument. Instructions in the callee using this

parameter must be updated to use the variable passed in by the caller. New local variables

are also created in the caller to hold any local variables formally created in the callee. New

local variables are created via CLEL by adding a new ClassDescriptor to the List in the

MethodLocalsBlobInfo returned by the get Locals method on the MethodDescriptor class

(see Section 3.1). Return instructions in the callee are also converted to unconditional

branches to the end of the newly inlined section of code.

Also, the instructions that push the parameters and call the method are removed

from the caller. The body of the callee is inserted in place of these instructions. If there is a

return value, a store instruction is inserted after the newly inlined code. After modifying the

caller’s code and local variables, the SetMethodsCode method on the CLELAssembly class

(see Section 3.1) is used to save the changes. This repairs any offsets or fields necessary to

make the method header in the assembly valid. It will also update the blob stream, which

holds the encoded count and types for the local variables of all methods in the assembly.

Chapter 5

Optimization Tests

The Common Language Infrastructure for Research (CLIR) is a layered toolset, thus a step-

wise evaluation was performed. The bottom layer of CLIR, the CLEL, was evaluated by

the successful and useful implementation of tools that use CLEL. Since the CLOT layer of

CLIR uses the CLEL, if CLOT evaluates as successful and useful then CLEL, by extension,

must be successful and useful.

CLOT provides the capability to analyze and optimize CIL code. Indeed, three op-

timizations were implemented using the framework provided by CLOT. The ability to build

these three optimizations partially affirms the success and usefulness of CLOT. However,

this affirmation gains strength if the optimized code is measurably improved. Indeed, if the

optimizations improve CIL program performance then it shows that research into CIL code

optimizations is worthwhile and since the CLIR enables such research then CLIR itself is

validated. The remainder of this chapter evaluates the effectiveness of the optimizations

implemented in CLOT and begins with a description of the testing environment.

58

59

5.1 Introduction and Testing Environment

In order to determine the effectiveness of the optimizations described in the previous chap-

ter, the results of applying the optimizations to three programs are discussed. These three

programs are The Game of Life [18][16] based on John Conway’s rules for how cellular auto-

toma replicates, Huffman Coding [12][38], which implements David A. Huffman’s algorithm

for lossless data compression, and ZipFolder [23], which compresses all the files in a folder

using the zip algorithm. The Game of Life and Huffman Coding are both written in Visual

Basic .NET and ZipFolder is written in C#. See Table 5.1 for the relative sizes of each

program.

Program Number of Classes Number of Methods Lines of CIL Code

Game of Life 1 7 158

Huffman Coding 3 15 401

ZipFolder 6 50 1768

Table 5.1: Relative program sizes

The input for each of the test programs was fixed to make sure that each run of the

program was exactly the same. The input was also chosen to be of a sufficient size to cause

the execution time to be long enough so that changes in the execution time caused by the

optimizations studied here would be more noticeable. The Game of Life was run with the

same starting generation on a 50 by 50 grid and ran through 100 generations. The Huffman

Coding program was run with the first volume of Edgar Allan Poe’s complete works as

input. Every time the ZipFolder program was run, it was run on a folder of source code

and executables, containing among other things a complete F# compiler.

The tests in this chapter were executed on a computer running Slackware Linux

12.0 with a 566 megahertz Celeron CPU that has 128 kilobytes of cache and 256 megabytes

60

of main memory. A Perl script was written to run each program 100 times and find the

average execution time. The Linux time command was used in the Perl script to obtain

execution times. Version 1.2.6 of Mono, which is an open source implementation of the .NET

Framework, was used in these tests. Since machine code, not the Common Intermediate

Language (CIL), is what is actually run on the CPU, Mono’s Ahead Of Time (AOT)

compilation feature was used to translate the assembly into a native image. Then objdump is

used to translate the native image into human-readable assembly. This process will provide

a better idea of how the optimizations actually affected the runtime of each program. All

Mono optimizations were turned off at every stage of the tests in this chapter. The following

three sections discuss how each of the three optimizations implemented for CLOT affected

performance.

5.2 One Pass Branch Instruction Replacement

Recall from Section 4.2 that three versions of BIR were written for this thesis. However,

the tests were only run on the best version that makes a single pass through the code. Also

recall the CIL has two types of branches: long and short. The long branch type has a one

byte operation code and a four byte offset. In contrast, the short branch type has a one byte

operation code, but only one byte for the branch offset. Replacing a five byte instruction

with a two byte instruction reduces the code size by three bytes for each replacement. This

optimization was described as an example of how to compact CIL code in [26], but no tests

or results were given. This section sheds light on the effects of this optimization.

Branches are generated in CIL by many common higher level language constructs

including loops, if statements, and try-catch exception blocks. The Mono C# and VB

.NET compilers generally generate long branches in CIL unless optimizations are turned on

61

in the compiler. Optimizations in Mono can be enabled in two places, at compile time and

at runtime. When the -O flag in C# or the /optimize flag in VB .NET is not explicitly

specified, a simple set of default optimizations implicitly are performed that provide a

balance between compile and runtime and the benefits gained by the optimizations [40].

However, BIR is not one of these simple optimizations. Therefore in order to make sure

that short branches are generated whenever possible, the optimization flag must be used

explicitly when compiling the code.

Branch Number of Long Branches Number Replaced Percent replacement

br 29 27 93%

brtrue 9 6 67%

brfalse 21 21 100%

leave 2 2 100%

TOTALS 61 56 92%

Table 5.2: Branches replaced for Game of Life

Branch Number of Long Branches Number Replaced Percent Replaced

br 47 45 96%

brtrue 19 19 100%

brfalse 27 24 89%

TOTALS 93 88 95%

Table 5.3: Branches replaced for Huffman

Tables 5.2 through 5.4 show the number of each type of long branches in the three

test programs and how many of each was replaced with a smaller, equivalent branch during

BIR. A vast majority of all of the long branches were replaced in all three programs. Ta-

ble 5.5 shows the changes in code size after BIR was run on each of these test programs. The

largest difference was ZipFolder with 561 bytes less code. Since ZipFolder has more lines of

higher level code, more branches were available for possible replacement. This implies that

the larger the program, the more the code size can be decreased by performing BIR.

62

Branch Number of Long Branches Number Replaced Percent Replaced

br 48 43 90%

brtrue 24 22 92%

brfalse 54 53 98%

beq 14 13 93%

bge 5 5 100%

bgt 3 3 100%

ble 4 4 100%

blt 14 13 93%

bneun 11 10 91%

bgtun 1 1 100%

bltun 1 1 100%

leave 19 19 100%

TOTALS 198 187 94%

Table 5.4: Branches replaced for ZipFolder

Program Code Size Before Code Size After Difference

Game of Life 1474 1306 -168 (-11.40%)

Huffman 3022 2758 -264 (-8.74%)

ZipFolder 8688 8127 -561 (-6.46%)

Table 5.5: Code size changes (in bytes)

Program Without BIR With BIR Difference

Game of Life 6.3684 6.3901 +0.0217 (+0.34%)

Huffman 10.3626 10.3201 -0.0425 (-0.41%)

ZipFolder 39.2829 39.1041 -0.1788 (-0.46%)

Table 5.6: Average execution time (in seconds) for BIR

Execution time remained roughly the same, within a small margin of error, after BIR

was applied as seen in Table 5.6. However, the advantage of BIR is that the intermediate

code size is reduced. This small savings relative to total program size might not make much

difference on a desktop or laptop computer, but on an embedded computer, where resources

are limited, the savings could help keep more of the code in the CPU’s cache and improve

performance [25].

63

5.3 Constant Propagation

Recall, constant propagation replaces instructions that load values from memory with in-

structions that load constant values. This replacement is allowed if the value being loaded

from memory can be proven to always be the constant value. This can decrease execution

time because it removes costly memory accesses [28][51][8].

public CRC32() {
UInt32 dwPolynomial = 0xEDB88320;
for (i=0; i < 256; i++) {

for (j=8; j > 0; j− −) {
dwCrc = (dwCrc >> 1) ˆ dwPolynomial;

}
}

}

Table 5.7: ZipFile C# code fragment

Original CIL Optimized CIL
ldc.i4 -306674912 ldc.i4 -306674912 //initialize dwPolynomial
stloc.0 stloc.0

ldloc.3 ldloc.3 // load dwCrc
ldc.i4.1 ldc.i4.1 // load 1
shr.un shr.un // shift right
ldloc.0 ldc.i4 -306674912 // OPTIMIZED LINE!
xor xor
stloc.3 stloc.3 // store into dwCrc

Table 5.8: ZipFile CIL

Assembly of Original CIL Assembly of Optimized CIL
mov -0x1c(%ebp),%ecx xor $0xebd88320,%eax
xor %ecx,%eax

Table 5.9: ZipFile Assembly

64

Program Number of Constants Propagated Lines of CIL Code

Game of Life 24 158

Huffman 41 401

ZipFolder 14 1768

Table 5.10: Number of Constants Propagated

Program Without CP With CP Difference

Game of Life 6.3686 6.2835 -0.0851 (-1.34%)

Huffman 10.3626 9.8489 -0.5137 (-4.96%)

ZipFolder 39.2829 37.4725 -1.8104 (-4.61%)

Table 5.11: Average execution time (in seconds)

Tables 5.7 through 5.9 illustrate the code transformations of applying CP. Table 5.7

shows a code fragment of C# .NET from the ZipFile program. Notice that the dwPolynomial

local variable is assigned a constant value that is not changed. The variable is then used

in the body of the loop statement. Because the programmer uses a variable, the value is

stored into memory and repeatedly loaded from memory. This can be seen in the low-level

CIL code on the left side of Table 5.8. In particular, the dwPolynomial variable is local

variable 0 and this variable’s value is stored by the stloc.0 instruction (the second CIL

instruction). Several instructions below is the ldloc.0 instruction that loads the value for

this variable. Notice that the CP optimization replaces this ldloc.0 instruction with a ldc.i4

instruction to load the constant value. Table 5.9 follows this change even further into the

native machine assembly code. Here, the mov instruction that access memory is eliminated

and the constant value has been propagated successfully into the computation (the xor

instruction).

Table 5.10 shows the number of constants propagated by CP, and Table 5.11 shows

the average execution times for the test programs measured both before and after CP was

applied. The benefits of optimizing with CP are impressive, resulting in execution decreases

of nearly 5% in some cases. But several other observations catch our interest. First, there

65

were far fewer opportunities for CP in the ZipFile program, which was the largest program.

Second, in spite of this, optimizing ZipFile still resulted in an impressive decrease of 4.61%

in execution time. Lastly, there was a significant difference between the gains showed by

the Huffman and ZipFile programs compared to the Game of Life program.

Private Function FindProbabilitiesForSymbols(ByVal Data() AsByte) As Long()
Dim I As Integer

For I = 0 To 255
B(I) = 0

Next
End Function

Table 5.12: Huffman Coding VB.NET code fragment

Original CIL Optimized CIL
ldc.i4.0 ldc.i4.0
stloc.s 5 stloc.s 5 // initialize zero
ldloc.s 5 ldc.i4.0 // changed: load constant 0
stloc.2 stloc.2 // I = 0
ldc.i4 255 ldc.i4 255 // initialize stop
stloc.3 stloc.3
ldc.i4.1 ldc.i4.1 // initialize step
stloc.4 stloc.4

ldloc.2 ldloc.2
ldloc.s 4 ldc.i4.1 // changed: load constant 1
add add // add step to I
stloc.2 stloc.2 // store into I
ldloc.2 ldloc.2 // load I
ldloc.3 ld.i4 255 // changed: load constant 255
cgt cgt // test for branch

Table 5.13: FindProbabilitiesForSymbols CIL

Investigating the actual code produced, the last two observations stem from the same

underlying issue. If constants are propagated into code that is executed many times, for

example into loops, then a single CP application can yield noticeable execution decreases.

Indeed, the ZipFile code in Table 5.7 optimized a statement inside two loops. This statement

66

is executed 2, 048 times each time a CRC32 object is created. Conversely, fewer of the CP

opportunities in the Game of Life were in loops.

As to the first observation, ZipFolder was a C# program compiled by the Mono C#

.NET compiler whereas the other two programs were Visual Basic programs compiled by the

Mono VB.NET compiler. Investigating the CIL generated by these two compilers revealed

that the VB.NET compiler creates more inefficient code that contains more opportunities

for CP. Table 5.12 shows a Visual Basic code fragment from the Huffman program and

Table 5.13 shows the resulting CIL generated. The for loop shown in Table 5.12 uses the

local variable “I” for the loop index. The loop upper bound is a constant, but the Mono

compiler generates a temporary local variable for this upper bound and uses this local

variable each time through the loop. In addition, the loop index is increased by 1 each time

through the loop; this is called the step value. The Mono VB.NET compiler also uses a

temporary local variable for this step value. Neither of these two temporary variables are

changed after their initial assignment and thus are constants that can be propagated. In the

CIL in Table 5.13, local variable 2 is used for the programmer variable “I”, local variable

3 is used for the upper bound value 255, and local variable 4 is used for the step value 1.

In particular, notice the following instruction sequence: ldc.i4 255 and stloc.3. These two

instructions store the value 255 into the temporary local variable. Then, the second to last

statement ldloc.3 loads this value from memory to be used in the loop comparison (the cgt

instruction).

5.4 Method Inlining

Recall that method inlining substitutes the method setup code (e.g, pushing parameters

onto stack) and method invocation code (including saving registers) at a call site with the

67

body of the called method. The key to method inlining is the selection of those methods to

inline. Many algorithms have been proposed [2][6][44], but, in order to demonstrate method

inlining, this thesis uses a simple, greedy algorithm.

As methods are inlined at the call sites of a method (the “caller”), the caller’s code

grows. Our algorithm continues inlining methods at call sites until this code growth exceeds

a certain threshold value that is a percentage of the original file size. This percentage is

specified in an external configuration file, thus allowing researchers to quickly rerun a test

with a different threshold value. As each call site is encountered, the method called will be

inlined if the five conditions for inlining detailed in Section 4.4.2 are satisfied.

Program Orig 10% Diff at 10% 20% Diff at 20%

Game of Life 6.3684 6.3687 +0.0003 (+0.00%) 6.3119 -0.0565 (-0.89%)

Huffman 10.3626 10.0829 -0.2797 (-2.70%) 10.152 -0.2106 (-2.03%)

ZipFolder 39.2829 39.2099 -0.0730 (-0.19%) 39.0962 -0.1867 (-0.48%)

Table 5.14: Average execution time (in seconds) for Method Inlining at 10% and 20%

Program 30% Diff at 30% 40% Diff at 40% 50% Diff at 50%

Game of Life 6.3353 -0.0331 (-0.52%) 6.3016 -0.0668 (-1.05%) 6.2947 -0.0737 (-1.16%)

Huffman 9.8874 -0.4752 (-4.59%) 8.8128 -1.5498 (-14.96%) 9.7068 -0.6558 (-6.33%)

ZipFolder 38.3509 -0.932 (-2.37%) 37.5546 -1.7283 (-4.40%) 39.3491 +0.0662 (+0.17)

Table 5.15: Average execution time (in seconds) for Method Inlining at 30%, 40% and
50%

The performance increase gained by method inlining is offset partially by an increase

in code size, an increase in cache misses, and increased register pressure [9]. Thus, some

inlining can decrease execution time but too much inlining can result in increased execution

time. Tables 5.14 and 5.15 show the results of performing method inlining on the three

test programs at varying threshold levels. It can be seen that a threshold of about 40%

achieved impressive decreases in execution time. The Game of Life program did not appear

68

to benefit much from method inlining. Further investigation revealed that there are only

seven methods in the program which decreased the chances to apply the optimization. In

addition, the methods were already experiencing some register pressure issues that became

more exacerbated by inlining. Indeed, a better thresholding mechanism may be based on

register pressure rather than code size.

Chapter 6

Conclusion and Future Work

6.1 Conclusion

The Common Language Infrastructure for Research (CLIR) provides a three layer toolset

for programming language research of the .NET environment. The CLIR layered architec-

ture is open in that users can access functionality in all layers. The bottom layer of CLIR

is the Common Language Engineering Library (CLEL). CLEL supplies the foundational

capabilities of reading and writing .NET assembly files. The second layer, the Common

Language Optimizing Toolset (CLOT), sits on top of CLEL and supplies a suite of op-

timization tools. CLOT provides three optimizations as well as the data structures and

analysis algorithms needed by the optimizations. The success of the CLOT layer validates

the usefulness and correctness of the CLEL layer. The top layer of CLIR contains standalone

applications useful for researchers that employ lower layers of CLIR. The DumpCode utility

directly accesses the CLEL layer to create a human readable form of a .NET assembly. The

Optimization Scheduling Tool (OST) utility provides a graphical interface that allows easy

selection and ordering of optimizations to perform on a .NET assembly file.

69

70

As mentioned in Section 2.4, little research was found regarding optimizing .NET

assembly code. Whereas, a wide variety of research for optimizing higher-level languages is

readily available. This thesis sheds some light on the potential gains of optimizing low-level

.NET assembly code. CLOT was used to implement three optimizations, each of which

was run on a test suite of three programs of various size. The one pass Branch Instruction

Replacement (BIR) optimization uses a peephole-based approach to replace an expensive

operation with a cheaper, equivalent one. BIR had little effect on execution time for all

three test programs. However, BIR did achieve a modest memory savings between 6.46%

and 11.40% for the test programs because the replacement instructions were smaller. This

could positively impact programs that are executed across a network by decreasing the

amount of code transferred.

The second optimization was constant propagation (CP). CP is a classic intraproce-

dural optimization requiring commonly-used optimizing data structures, such as a control

flow graph, and useful algorithms including reaching definitions. Many opportunities were

found for CP and significant decreases in program execution time resulted. In addition, it

was discovered that the Mono VB .NET compiler generates extra local variables in the CIL

that are not generated by the C# compiler. The final optimization was method inlining,

which is an interprocedural technique. This thesis implements a greedy algorithm that re-

places the smallest methods until the code size exceeds a threshold value. Varying threshold

values between 10% to 50% were explored. Generally, 40% achieved the best decreases in

program execution time.

The successful implementation of the three optimizations serves as a validation of

the CLOT component of CLIR. The CLOT framework allows other researchers to use the

tools currently implemented or extend these tools in new ways or build new tools entirely.

71

The user applications of the top CLIR layer were deployed to perform the optimization

experiments. The optimizations were found to have beneficial impacts and thus validates

the CLIR concept generally.

6.2 Future Work

There are several distinct directions of future work possible. One direction involves contin-

ued optimization experimentation. For example, other method selection algorithms could

be investigated for method inlining. In addition, other thresholding calculations could be

attempted including an estimate of potential register pressure. Also, CLOT could be ex-

panded with other well-known traditional optimizations such as common subexpression

elimination and dead code elimination. Another direction is the expansion of the CLEL

layer to improve and/or provide access to all the metadata tables and assembly fields. For

example, CLEL does not currently allow for adding a class to an assembly.

Another direction of future work consists of a more rigorous experimentation of

optimizing .NET CIL code. This thesis has shown that optimizing CIL code can be benefi-

cial. However, a determination of which optimizations and which orderings of optimization

application was not studied. In addition, deficiencies in high-level .NET compilers (e.g.,

VB and C#) were uncovered. There may be further improvements to those tools that may

be discovered. Lastly, this thesis concentrated on CIL code generated by the open-source

Mono .NET compiler. Future efforts could experiment with the Microsoft Visual Studio

.NET compiler.

Bibliography

[1] Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. Compilers: Principles, Tech-
niques, & Tools. Pearson Education, Boston, MA, second edition, 2007.

[2] Aigner, G. and Holzle, U. Eliminating virtual function calls in c++ programs. ECOOP
’96 Conference Proceedings, 1996.

[3] Appel, A. W. Modern Compiler Implementation in Java. Press Syndicate of the Uni-
versity of Cambridge, Cambridge, England, first edition, 1999.

[4] Arnold, K., Gosling, J., and Holmes,D. The Java Programming Language. Addison
Wesley, Boston, MA, fourth edition, 2006.

[5] Besson, F., de Grenier de Latour, T., and Jensen, T. Secure calling contexts for stack
inspection. PPDP ’02 Proceedings of the 4th ACM SIGPLAN international conference
on principles and practice of declarative programming, Pages 26 - 87, 2002.

[6] Bradel, B. J. and Abdelrahman, T. S. The use of traces for inlining in java programs.
LCPC ’04 Proceedings of the 17th international conderence on Languages and Compil-
ers for High Performace Computing, 2004.

[7] Carlisle, M. C., Sward, R. E., and Humphries, J. W. Weaving ada 95 into the .net en-
vironment. SIGAda ’02 Proceedings of the 2002 annual ACM SIGAda international
conference on Ada: The engineering of correct and reliable software for real-time &
distributed systems using Ada and related technologies, Pages 22 - 26, 2002.

[8] Caudill, S. and Machkasova, E. Empirical studies of java optimizations. In Midwest
Instruction and Computing Symposium, 2005.

[9] Chakrabarti, D. R. and Liu, S. Inline analysis: Beyond selection heuristics. In CGO
’06 Proceedings of the International Symposium on Code Generation and Optimization,
2006.

[10] Cooper, K. and Torczon, L. Engineering a compiler. Morgan Kaufmann Publishers,
San Francisco, CA, first edition, 2003.

[11] Cooper, K. D., Wall, M. W., and Torczon, L. Unexpected side effects of inline substi-
tution: a case study. ACM Letters on Programming Language and Systems, Volume 1
Number 1, 1992.

[12] Cormen, T. H., Leiserson, C. E., Rivest, R. R., and Stein, C. Introduction to Algo-
rithms. The MIT Press, Cambridge, MA, third edition, 2009.

72

73

[13] Dearle, A. Software deployment, past, present and future. FOSE ’07 2007 Future of
Software Engineering, 2007.

[14] Dowd, T., Henderson, F., and Ross, P. Compiling mercury to the .net common lan-
guage runtime. Electronic Notes in Theoretical Computer Science, 59 No. 1, 2001.

[15] Fowler, M. Inversion of control and the dependency injection pattern. World Wide Web
electronic publication, http://www.martinfowler.com/articles/injection.html, 2004.

[16] Foxall, J. D. Sams Teach Yourself Visual Basic 2010 in 24 Hours. Sams Publishing,
Carmel, IN, first edition, 2010.

[17] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Boston, MA, first edition, 1994.

[18] Gardner, M. Mathematical games: The fantastic combinations of john conway’s new
solitaire game “life”. Scientific American 223: 120 - 123, October 1970.

[19] Ghosh, M., Kumar, R., and Chakrabarti, P. P. Fsm matchers: A post compilation op-
timization technique for extensible architectures. International Conference on High
Performance Computing (HiPC 2004), Workshop on New Horizons in Compiler Anal-
ysis and Optimizations, 2004.

[20] Hanson, D. R. Lcc.net: Targeting the .net common intermediate lan-
guage from standard c. World Wide Web electronic publication,
http://research.microsoft.com/pubs/69973/tr-2002-112.pdf, 2003.

[21] Hauble, C., Wimmer, C., and Mossenbock, H. Evaluation of trace inlining heuristics
for java. SAC ’12 Proceeding of the 27th Annual ACM Symposium on Applied Com-
puting, 2012.

[22] Hejlsberg, A., Torgersen, M., Wiltamuth, S., and Golde, P. The C# Programming
Language. Addison Wesley, Boston, MA, fourth edition, 2010.

[23] Huggins, B. Zipfolder project homepage. World Wide Web electronic publication,
http://zipfolder.codeplex.com, 2007.

[24] Intel. Intel architecture software developer’s manual volume 2: In-
struction set reference. World Wide Web electronic publication,
http://www.intel.com/design/intarch/manuals/243191.htm, 1999.

[25] Johnson, N. E. Code size optimization for embedded processors. Master’s thesis, Uni-
versity of Cambridge, http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-607.pdf,
November 2004.

[26] Lidin, S. Expert .NET 2.0 IL Assembler. Apress, Berkeley, CA, first edition, 2006.

[27] Meijer, E. and Gough, J. Technical overview of the common language run-
time. World Wide Web electronic publication, http://research.microsoft.com/en-
us/um/people/emeijer/papers/clr.pdf, 2000.

[28] Metzger, R. and Stroud, S. Interprocedural constant propagation: an empirical study.
ACM Letters on Programming Languages and Systems (LOPLAS), 2 Issue 1-4, March
- Dec. 1993, 1993.

74

[29] Microsoft Corporation. String structure. World Wide Web electronic publication,
http://msdn.microsoft.com/en-us/library/ms646987.aspx.

[30] Microsoft Corporation. Stringfileinfo structure. World Wide Web electronic publica-
tion, http://msdn.microsoft.com/en-us/library/ms646989(VS.85).aspx.

[31] Microsoft Corporation. Stringtable structure. World Wide Web electronic publication,
http://msdn.microsoft.com/en-us/library/ms646992.aspx.

[32] Microsoft Corporation. Var structure. World Wide Web electronic publication,
http://msdn.microsoft.com/en-us/library/ms646994.aspx.

[33] Microsoft Corporation. Varfileinfo structure. World Wide Web electronic publication,
http://msdn.microsoft.com/en-us/library/ms646995.aspx.

[34] Microsoft Corporation. Vs fixedfileinfo structure. World Wide Web electronic publi-
cation, http://msdn.microsoft.com/en-us/library/ms646997.aspx.

[35] Microsoft Corporation. Vs versioninfo structure. World Wide Web electronic publica-
tion, http://msdn.microsoft.com/en-us/library/ms647001.aspx.

[36] Microsoft Corporation. Microsoft portable executable and common ob-
ject file format specification. World Wide Web electronic publication,
http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx, 2008.

[37] Miller, J. S. and Ragsdale, S. The Common Language Infrastructure Annotated Stan-
dard. Addison Wesley, Boston, MA, first edition, 2004.

[38] MKA Software. Adding huffman coding to your vb .net application. World Wide Web
electronic publication, http://mka-soft.com/index.php/easy-coding/47-add-huffman,
2011.

[39] Mono Project. Mono project’s history. World Wide Web electronic publication,
http://www.mono-project.com/History, 2008.

[40] Mono Project. Aot. World Wide Web electronic publication, http://www.mono-
project.com/AOT, 2011.

[41] Nystrom, N. J. Bytecode-level analysis and optimization of java classes. Master’s the-
sis, Purdue University, ftp://ftp.cs.purdue/pub/hosking/papers/nystrom.pdf, August
1998.

[42] Pressman, R. Software Engineering - A Practitioner’s Approach (6th ed.). McGraw
Hill, New York, NY, sixth edition, 2004.

[43] Richter, J. CLR via C#. Microsoft Press, Redmond, WA, second edition, 2006.

[44] Sewe, A., Jochem, J., and Mezini, M. Next in line, please!: Exploiting the indrect
benefits of inlining by accurately predicting further inlining. SPLASH ’11 Workshops
Proceedings of the compilation of the co-located workshops on DSM ’11, TMC ’11,
AGERE! ’11 AOOPES ’11, NEAT ’11, and VMIL ’11, 2011.

75

[45] Software Developer’s Journal. Browsing through headers - an introduc-
tion to reverse engineering. World Wide Web electronic publication,
http://en.sdjournal.org/products/articleInfo/28, 2006.

[46] Spinellis, D. Declarative peephole optimization using string pattern matching. ACM
SIGPLAN LAN Notes, 34(2):47-51, February 1999.

[47] Steven S. Muchnick. Advanced Compiler Design & Implementation. Morgan Kauf-
mann, San Fransico, CA, first edition, 1997.

[48] Stutz, D., Neward, T., and Shilling, G. Shared Source CLI Essentials. O’Reilly, Se-
bastopol, CA, first edition, 2003.

[49] Suganuma, T., Yasue, T., Kawahito, M., Komatsu, H., and Nakatani, T. Design and
evaluation of dynamic optimizations for a java just-in-time compiler. ACM Transac-
tions on Programming Languages and Systems (TOPLAS), Volume 27 Issue 4, July
2005, 2005.

[50] Thai,T. and Lam, H. Q. .NET Framework Essentials. O’Reilly, Sebastopol, CA, third
edition, 2003.

[51] Verbrugge, C., Co, P., and Hendren, L. Generalized constant propagation a study in
c. In In Proceedings of the 1996 International Conference on Compiler Construction,
1996.

[52] Wimmer, C. and Mossenbock, H. Automatic feedback-directed object inlining in the
java hotspot virtual machine. VEE ’07 Proceedings of the 3rd international conference
on Virtual execution environments, 2007.

[53] Yu, D., Kennedy, A., and Syme, D. Formalization of generics for the .net common lan-
guage runtime. POPL ’04 Proceedings of the 31st ACM SIGPLAN-SIGACT symposium
on principles on programming languages, Pages 39 - 51, 2004.

[54] Zerzelidis, A. and Wellings, A. J. Requirements for a real-time .net framework. ACM
SIGPLAN Notices, 40 Issue 2, 2005.

Appendix A

Bubble Sort in C#

For this thesis Appendix A through C will take an example program and decompose the

assembly file format. What follows is a program written in C# using the bubble sorting

[12] algorithm to sort a list of integers. Appendix B contains a listing of the contents of the

assembly in hexadecimal and Appendix C covers the various sections, tables and fields that

are represented by the assembly in Appendix B.

using System;
using System.Collections;

public class BubbleSort
{

private ArrayList nums;

public BubbleSort()
{

nums = new ArrayList();
nums.Add(91);
nums.Add(5);
nums.Add(101);
nums.Add(3);
nums.Add(58);
nums.Add(-14);
nums.Add(199);
nums.Add(44);
nums.Add(1);
nums.Add(678);
doBubbleSort();
int i;

76

77

for(i = 0;i < nums.Count;i++)
Console.WriteLine(nums[i]);

}

private void doBubbleSort()
{

int i,j,k;
for(k = 0;k < nums.Count;k++)

for(i = 0;i < nums.Count;i++)
for(j = 0;j < nums.Count;j++)

if((int)nums[i] < (int)nums[j])
swap(i,j);

}

public void swap(int first,int second)
{

int temp = (int)nums[first];
nums[first] = nums[second];
nums[second] = temp;

}

public static void Main()
{

new BubbleSort();
}

}

Appendix B

BubbleSort.exe hexadecimal dump

What follows is the output after running “BubbleSort.exe” through the Linux xxd program.

The first column is the offset from the beginning of the file. The middle columns contain

the bytes of the file in hexadecimal. The last column displays the file bytes in ASCII.

0000000: 4d5a 9000 0300 0000 0400 0000 ffff 0000 MZ..............
0000010: b800 0000 0000 0000 4000 0000 0000 0000@.......
0000020: 0000 0000 0000 0000 0000 0000 0000 0000
0000030: 0000 0000 0000 0000 0000 0000 8000 0000
0000040: 0e1f ba0e 00b4 09cd 21b8 014c cd21 5468!..L.!Th
0000050: 6973 2070 726f 6772 616d 2063 616e 6e6f is program canno
0000060: 7420 6265 2072 756e 2069 6e20 444f 5320 t be run in DOS
0000070: 6d6f 6465 2e0d 0d0a 2400 0000 0000 0000 mode....$.......
0000080: 5045 0000 4c01 0300 8121 f648 0000 0000 PE..L....!.H....
0000090: 0000 0000 e000 0e01 0b01 0600 0006 0000
00000a0: 0004 0000 0000 0000 0020 0000 0020 0000
00000b0: 0040 0000 0000 4000 0020 0000 0002 0000 .@....@..
00000c0: 0400 0000 0000 0000 0400 0000 0000 0000
00000d0: 0080 0000 0002 0000 0000 0000 0300 0000
00000e0: 0000 1000 0010 0000 0000 1000 0010 0000
00000f0: 0000 0000 1000 0000 0000 0000 0000 0000
0000100: 1820 0000 4f00 0000 0040 0000 e402 0000 . ..O....@......
0000110: 0000 0000 0000 0000 0000 0000 0000 0000
0000120: 0060 0000 0c00 0000 0000 0000 0000 0000 .‘..............
0000130: 0000 0000 0000 0000 0000 0000 0000 0000
0000140: 0000 0000 0000 0000 0000 0000 0000 0000
0000150: 0000 0000 0000 0000 1020 0000 0800 0000
0000160: 0000 0000 0000 0000 6420 0000 4800 0000d ..H...
0000170: 0000 0000 0000 0000 2e74 6578 7400 0000text...
0000180: 9005 0000 0020 0000 0006 0000 0002 0000
0000190: 0000 0000 0000 0000 0000 0000 2000 0060‘

78

79

00001a0: 2e72 7372 6300 0000 e402 0000 0040 0000 .rsrc........@..
00001b0: 0004 0000 0008 0000 0000 0000 0000 0000
00001c0: 0000 0000 4000 0040 2e72 656c 6f63 0000@..@.reloc..
00001d0: 0c00 0000 0060 0000 0002 0000 000c 0000‘..........
00001e0: 0000 0000 0000 0000 0000 0000 4000 0042@..B
00001f0: 0000 0000 0000 0000 0000 0000 0000 0000
0000200: ff25 1020 4000 0000 0000 0000 0000 0000 .%. @...........
0000210: 4020 0000 0000 0000 5a20 0000 0000 0000 @Z
0000220: 0000 0000 4e20 0000 1020 0000 0000 0000N
0000230: 0000 0000 0000 0000 0000 0000 0000 0000
0000240: 0000 5f43 6f72 4578 654d 6169 6e00 6d73 .._CorExeMain.ms
0000250: 636f 7265 652e 646c 6c00 4020 0000 0000 coree.dll.@
0000260: 0000 0000 4800 0000 0200 0000 e822 0000H........"..
0000270: a802 0000 0100 0000 0400 0006 e822 0000"..
0000280: 0000 0000 0000 0000 0000 0000 0000 0000
0000290: 0000 0000 0000 0000 0000 0000 0000 0000
00002a0: 0000 0000 0000 0000 0000 0000 0000 0000
00002b0: 0000 0000 0000 0000 0000 0000 0000 0000
00002c0: 0000 0000 0000 0000 0000 0000 0000 0000
00002d0: 0000 0000 0000 0000 0000 0000 0000 0000
00002e0: 0000 0000 0000 0000 0000 0000 1330 1f000..
00002f0: 0601 0000 0100 0011 0228 0100 000a 0273(.....s
0000300: 0200 000a 7d01 0000 0402 7b01 0000 041f}.....{.....
0000310: 5b8c 0300 0001 6f03 0000 0a26 027b 0100 [.....o....&.{..
0000320: 0004 1b8c 0300 0001 6f03 0000 0a26 027bo....&.{
0000330: 0100 0004 1f65 8c03 0000 016f 0300 000ae.....o....
0000340: 2602 7b01 0000 0419 8c03 0000 016f 0300 &.{..........o..
0000350: 000a 2602 7b01 0000 041f 3a8c 0300 0001 ..&.{.....:.....
0000360: 6f03 0000 0a26 027b 0100 0004 1ff2 8c03 o....&.{........
0000370: 0000 016f 0300 000a 2602 7b01 0000 0420 ...o....&.{....
0000380: c700 0000 8c03 0000 016f 0300 000a 2602o....&.
0000390: 7b01 0000 041f 2c8c 0300 0001 6f03 0000 {.....,.....o...
00003a0: 0a26 027b 0100 0004 178c 0300 0001 6f03 .&.{..........o.
00003b0: 0000 0a26 027b 0100 0004 20a6 0200 008c ...&.{....
00003c0: 0300 0001 6f03 0000 0a26 0228 0200 0006o....&.(....
00003d0: 160a 3815 0000 0002 7b01 0000 0406 6f04 ..8.....{.....o.
00003e0: 0000 0a28 0500 000a 0617 580a 0602 7b01 ...(......X...{.
00003f0: 0000 046f 0600 000a 3fda ffff ff2a 0000 ...o....?....*..
0000400: 1330 0e00 8600 0000 0200 0011 160c 386d .0............8m
0000410: 0000 0016 0a38 5100 0000 160b 3835 00008Q.....85..
0000420: 0002 7b01 0000 0406 6f04 0000 0a79 0300 ..{.....o....y..
0000430: 0001 4a02 7b01 0000 0407 6f04 0000 0a79 ..J.{.....o....y
0000440: 0300 0001 4a3c 0800 0000 0206 0728 0300J<.......(..
0000450: 0006 0717 580b 0702 7b01 0000 046f 0600X...{....o..
0000460: 000a 3fba ffff ff06 1758 0a06 027b 0100 ..?......X...{..
0000470: 0004 6f06 0000 0a3f 9eff ffff 0817 580c ..o....?......X.
0000480: 0802 7b01 0000 046f 0600 000a 3f82 ffff ..{....o....?...
0000490: ff2a 0000 1330 0a00 3e00 0000 0300 0011 .*...0..>.......

80

00004a0: 027b 0100 0004 036f 0400 000a 7903 0000 .{.....o....y...
00004b0: 014a 0a02 7b01 0000 0403 027b 0100 0004 .J..{......{....
00004c0: 046f 0400 000a 6f07 0000 0a02 7b01 0000 .o....o.....{...
00004d0: 0404 068c 0300 0001 6f07 0000 0a2a 0000o....*..
00004e0: 1e73 0100 0006 262a 4253 4a42 0100 0100 .s....&*BSJB....
00004f0: 0000 0000 0c00 0000 7631 2e31 2e34 3332v1.1.432
0000500: 3200 0000 0000 0500 7000 0000 2401 0000 2.......p...$...
0000510: 237e 0000 9401 0000 c000 0000 2353 7472 #~..........#Str
0000520: 696e 6773 0000 0000 5402 0000 0400 0000 ings....T.......
0000530: 2355 5300 5802 0000 4000 0000 2342 6c6f #US.X...@...#Blo
0000540: 6200 0000 9802 0000 1000 0000 2347 5549 b...........#GUI
0000550: 4400 0000 0000 0000 0000 0000 0100 0001 D...............
0000560: 5705 0200 0900 0000 0000 0000 0000 0000 W...............
0000570: 0100 0000 0400 0000 0200 0000 0100 0000
0000580: 0400 0000 0200 0000 0700 0000 0300 0000
0000590: 0100 0000 0100 0000 0000 8700 0100 0000
00005a0: 0000 0600 0a00 1100 0600 1e00 2800 0600(...
00005b0: 3b00 1100 0600 4e00 1100 0000 0000 7e00 ;.....N.......~.
00005c0: 0000 0000 0100 0100 0100 1000 7300 0000s...
00005d0: 0500 0100 0100 0100 9600 2700 ec20 0000’.. ..
00005e0: 0000 8618 1800 0100 0100 0022 0000 0000"....
00005f0: 8100 9b00 0100 0100 9422 0000 0000 8600"......
0000600: a800 3500 0100 e022 0000 0000 9600 ba00 ..5...."........
0000610: 3b00 0300 0000 0100 ad00 0000 0200 b300 ;...............
0000620: 0900 1800 0100 1100 1800 0100 1100 4100A.
0000630: 0e00 1100 4500 1300 2100 5600 1800 1100E...!.V.....
0000640: 6000 1d00 1100 6a00 2100 2b00 2f00 2b00 ‘.....j.!.+./.+.
0000650: 0480 0000 0000 0000 0000 0000 0000 0000
0000660: 0000 7300 0000 0100 0000 8813 0000 0000 ..s.............
0000670: 0000 0500 0100 0000 0000 0000 006d 7363msc
0000680: 6f72 6c69 6200 4f62 6a65 6374 0053 7973 orlib.Object.Sys
0000690: 7465 6d00 2e63 746f 7200 4172 7261 794c tem..ctor.ArrayL
00006a0: 6973 7400 5379 7374 656d 2e43 6f6c 6c65 ist.System.Colle
00006b0: 6374 696f 6e73 0049 6e74 3332 0041 6464 ctions.Int32.Add
00006c0: 0067 6574 5f49 7465 6d00 436f 6e73 6f6c .get_Item.Consol
00006d0: 6500 5772 6974 654c 696e 6500 6765 745f e.WriteLine.get_
00006e0: 436f 756e 7400 7365 745f 4974 656d 0042 Count.set_Item.B
00006f0: 7562 626c 6553 6f72 7400 3c4d 6f64 756c ubbleSort.<Modul
0000700: 653e 0042 7562 626c 6553 6f72 742e 6578 e>.BubbleSort.ex
0000710: 6500 6e75 6d73 0064 6f42 7562 626c 6553 e.nums.doBubbleS
0000720: 6f72 7400 7377 6170 0066 6972 7374 0073 ort.swap.first.s
0000730: 6563 6f6e 6400 4d61 696e 0000 0000 0000 econd.Main......
0000740: 0003 2000 0108 b77a 5c56 1934 e089 0420z\V.4...
0000750: 0108 1c04 2001 1c08 0400 0101 1c03 2000
0000760: 0805 2002 0108 1c03 0612 0903 0701 0805
0000770: 0703 0808 0805 2002 0108 0803 0000 0100
0000780: 5a64 03bf 392f 0846 95a9 37ad 5959 531b Zd..9/.F..7.YYS.
0000790: 0000 0000 0000 0000 0000 0000 0000 0000

81

00007a0: 0000 0000 0000 0000 0000 0000 0000 0000
00007b0: 0000 0000 0000 0000 0000 0000 0000 0000
00007c0: 0000 0000 0000 0000 0000 0000 0000 0000
00007d0: 0000 0000 0000 0000 0000 0000 0000 0000
00007e0: 0000 0000 0000 0000 0000 0000 0000 0000
00007f0: 0000 0000 0000 0000 0000 0000 0000 0000
0000800: 0000 0000 0000 0000 0000 0000 0000 0100
0000810: 1000 0000 1800 0080 0000 0000 0000 0000
0000820: 0000 0000 0000 0100 0100 0000 3000 00800...
0000830: 0000 0000 0000 0000 0000 0000 0000 0100
0000840: 0000 0000 4800 0000 5840 0000 8c02 0000H...X@......
0000850: 0000 0000 0000 0000 8c02 3400 0000 56004...V.
0000860: 5300 5f00 5600 4500 5200 5300 4900 4f00 S._.V.E.R.S.I.O.
0000870: 4e00 5f00 4900 4e00 4600 4f00 0000 0000 N._.I.N.F.O.....
0000880: bd04 effe 0000 0100 0000 0000 0000 0000
0000890: 0000 0000 0000 0000 3f00 0000 0000 0000?.......
00008a0: 0400 0000 0200 0000 0000 0000 0000 0000
00008b0: 0000 0000 4400 0000 0100 5600 6100 7200D.....V.a.r.
00008c0: 4600 6900 6c00 6500 4900 6e00 6600 6f00 F.i.l.e.I.n.f.o.
00008d0: 0000 0000 2400 0400 0000 5400 7200 6100$.....T.r.a.
00008e0: 6e00 7300 6c00 6100 7400 6900 6f00 6e00 n.s.l.a.t.i.o.n.
00008f0: 0000 0000 7f00 b004 ec01 0000 0100 5300S.
0000900: 7400 7200 6900 6e00 6700 4600 6900 6c00 t.r.i.n.g.F.i.l.
0000910: 6500 4900 6e00 6600 6f00 0000 c801 0000 e.I.n.f.o.......
0000920: 0100 3000 3000 3700 6600 3000 3400 6200 ..0.0.7.f.0.4.b.
0000930: 3000 0000 2800 0200 0100 5000 7200 6f00 0...(.....P.r.o.
0000940: 6400 7500 6300 7400 5600 6500 7200 7300 d.u.c.t.V.e.r.s.
0000950: 6900 6f00 6e00 0000 2000 0000 2400 0200 i.o.n... ...$...
0000960: 0100 4300 6f00 6d00 7000 6100 6e00 7900 ..C.o.m.p.a.n.y.
0000970: 4e00 6100 6d00 6500 0000 0000 2000 0000 N.a.m.e..... ...
0000980: 2400 0200 0100 5000 7200 6f00 6400 7500 $.....P.r.o.d.u.
0000990: 6300 7400 4e00 6100 6d00 6500 0000 0000 c.t.N.a.m.e.....
00009a0: 2000 0000 2800 0200 0100 4c00 6500 6700 ...(.....L.e.g.
00009b0: 6100 6c00 4300 6f00 7000 7900 7200 6900 a.l.C.o.p.y.r.i.
00009c0: 6700 6800 7400 0000 2000 0000 3800 0b00 g.h.t... ...8...
00009d0: 0100 4900 6e00 7400 6500 7200 6e00 6100 ..I.n.t.e.r.n.a.
00009e0: 6c00 4e00 6100 6d00 6500 0000 4200 7500 l.N.a.m.e...B.u.
00009f0: 6200 6200 6c00 6500 5300 6f00 7200 7400 b.b.l.e.S.o.r.t.
0000a00: 0000 0000 2c00 0200 0100 4600 6900 6c00,.....F.i.l.
0000a10: 6500 4400 6500 7300 6300 7200 6900 7000 e.D.e.s.c.r.i.p.
0000a20: 7400 6900 6f00 6e00 0000 0000 2000 0000 t.i.o.n..... ...
0000a30: 1c00 0200 0100 4300 6f00 6d00 6d00 6500C.o.m.m.e.
0000a40: 6e00 7400 7300 0000 2000 0000 2400 0200 n.t.s... ...$...
0000a50: 0100 4600 6900 6c00 6500 5600 6500 7200 ..F.i.l.e.V.e.r.
0000a60: 7300 6900 6f00 6e00 0000 0000 2000 0000 s.i.o.n..... ...
0000a70: 4800 0f00 0100 4f00 7200 6900 6700 6900 H.....O.r.i.g.i.
0000a80: 6e00 6100 6c00 4600 6900 6c00 6500 6e00 n.a.l.F.i.l.e.n.
0000a90: 6100 6d00 6500 0000 4200 7500 6200 6200 a.m.e...B.u.b.b.

82

0000aa0: 6c00 6500 5300 6f00 7200 7400 2e00 6500 l.e.S.o.r.t...e.
0000ab0: 7800 6500 0000 0000 2c00 0200 0100 4c00 x.e.....,.....L.
0000ac0: 6500 6700 6100 6c00 5400 7200 6100 6400 e.g.a.l.T.r.a.d.
0000ad0: 6500 6d00 6100 7200 6b00 7300 0000 0000 e.m.a.r.k.s.....
0000ae0: 2000 0000 0000 0000 0000 0000 0000 0000
0000af0: 0000 0000 0000 0000 0000 0000 0000 0000
0000b00: 0000 0000 0000 0000 0000 0000 0000 0000
0000b10: 0000 0000 0000 0000 0000 0000 0000 0000
0000b20: 0000 0000 0000 0000 0000 0000 0000 0000
0000b30: 0000 0000 0000 0000 0000 0000 0000 0000
0000b40: 0000 0000 0000 0000 0000 0000 0000 0000
0000b50: 0000 0000 0000 0000 0000 0000 0000 0000
0000b60: 0000 0000 0000 0000 0000 0000 0000 0000
0000b70: 0000 0000 0000 0000 0000 0000 0000 0000
0000b80: 0000 0000 0000 0000 0000 0000 0000 0000
0000b90: 0000 0000 0000 0000 0000 0000 0000 0000
0000ba0: 0000 0000 0000 0000 0000 0000 0000 0000
0000bb0: 0000 0000 0000 0000 0000 0000 0000 0000
0000bc0: 0000 0000 0000 0000 0000 0000 0000 0000
0000bd0: 0000 0000 0000 0000 0000 0000 0000 0000
0000be0: 0000 0000 0000 0000 0000 0000 0000 0000
0000bf0: 0000 0000 0000 0000 0000 0000 0000 0000
0000c00: 0020 0000 0c00 0000 0230 0000 0000 00000......
0000c10: 0000 0000 0000 0000 0000 0000 0000 0000
0000c20: 0000 0000 0000 0000 0000 0000 0000 0000
0000c30: 0000 0000 0000 0000 0000 0000 0000 0000
0000c40: 0000 0000 0000 0000 0000 0000 0000 0000
0000c50: 0000 0000 0000 0000 0000 0000 0000 0000
0000c60: 0000 0000 0000 0000 0000 0000 0000 0000
0000c70: 0000 0000 0000 0000 0000 0000 0000 0000
0000c80: 0000 0000 0000 0000 0000 0000 0000 0000
0000c90: 0000 0000 0000 0000 0000 0000 0000 0000
0000ca0: 0000 0000 0000 0000 0000 0000 0000 0000
0000cb0: 0000 0000 0000 0000 0000 0000 0000 0000
0000cc0: 0000 0000 0000 0000 0000 0000 0000 0000
0000cd0: 0000 0000 0000 0000 0000 0000 0000 0000
0000ce0: 0000 0000 0000 0000 0000 0000 0000 0000
0000cf0: 0000 0000 0000 0000 0000 0000 0000 0000
0000d00: 0000 0000 0000 0000 0000 0000 0000 0000
0000d10: 0000 0000 0000 0000 0000 0000 0000 0000
0000d20: 0000 0000 0000 0000 0000 0000 0000 0000
0000d30: 0000 0000 0000 0000 0000 0000 0000 0000
0000d40: 0000 0000 0000 0000 0000 0000 0000 0000
0000d50: 0000 0000 0000 0000 0000 0000 0000 0000
0000d60: 0000 0000 0000 0000 0000 0000 0000 0000
0000d70: 0000 0000 0000 0000 0000 0000 0000 0000
0000d80: 0000 0000 0000 0000 0000 0000 0000 0000
0000d90: 0000 0000 0000 0000 0000 0000 0000 0000

83

0000da0: 0000 0000 0000 0000 0000 0000 0000 0000
0000db0: 0000 0000 0000 0000 0000 0000 0000 0000
0000dc0: 0000 0000 0000 0000 0000 0000 0000 0000
0000dd0: 0000 0000 0000 0000 0000 0000 0000 0000
0000de0: 0000 0000 0000 0000 0000 0000 0000 0000
0000df0: 0000 0000 0000 0000 0000 0000 0000 0000

Appendix C

Assembly File Format

The assembly file format is an extension of the Portable Executable (PE) file format [36][37]

used by Windows executables. An overview of the PE file format is shown in Figure C.1.

The assembly file format is the same as the PE file format except the .text section is

structured differently. See [36] or [37] for the layout of the .text section of the PE file

format. The layout of the assembly .text section can be seen in Figure C.2.

PE Signature
DOS Header

PE Header

NT Specific
Data Directories
PE Section Headers

.text

Standard Fields

.rsrc

.reloc

Figure C.1: PE and assembly file format

Import Table

Import Address Table

Hint/Name Table

Import Lookup Table

Metadata Root

CLI Header

Method Headers

Metadata Stream Headers

#~ Stream

String Stream

Blob Stream

GUID Stream

User String Stream

Figure C.2: Assembly .text section

The assembly file format begins with the DOS Header, which is a DOS executable

stub used to print an error message if the assembly file is run in DOS. Next is the PE

Signature, which is a magic number to mark the beginning of the PE file. The next two

84

85

Offset RVA Name Value

0 0 Magic Number 4d5a

2 2 Last Page of File 0090

4 4 Pages in File 0003

6 6 Relocations 0000

8 8 Size of Header 0004

a a Min Paragraphs 0000

c c Max Paragraphs ffff

e e Initial SS Value 0000

10 10 Initial SP Value 00b8

12 12 Checksum 0000

14 14 Initial IP Value 0000

16 16 Initial CS Value 0000

18 18 Relocation Table 0040

1a 1a Overlay Number 0000

1c 1c Reserved 0000 0000 0000 0000

24 24 OEM Identifier 0000

26 26 OEM Information 0000

28 28 Reserved2 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

3c 3c PE Signature Offset 0000 0080

40 40 DOS Stub 0e1f ba0e 00b4 09cd 21b8 014c cd21 5468 6973 2070 726f 6772
616d 2063 616e 6e6f 7420 6265 2072 756e 2069 6e20 444f 5320
6d6f 6465 2e0d 0d0a 2400 0000 0000 0000

80 80 PE Signature 5045 0000

Table C.1: DOS header

sections, PE Header and Standard Fields, contain information about where and how this

assembly was created and the offset and size of the code and data sections. Next is the NT

Specific section and it contains information about the environment used when an assembly

file was created. The Data Directories section follows next and contains the size and offsets

to additional tables used in the .text section. The Section Headers contain the name, size,

and offsets of the sections contained in an assembly file. Three common sections follow one

after another beginning with the .text section. This section contains the class and method

information along with the code. The .rsrc section follows the .text section and contains

unmanaged resources used by the assembly file which are stored as a tree. Icons, fonts and

configuration files are examples of resources that can be stored in the .rsrc section. These

resources are called unmanaged because this section was inherited from the PE file format

and are not managed by the Common Language Infrastructure runtime. Managed resources

are kept in the .text section. Following the .rsrc section is the .reloc section. This section

86

keeps a table of sections to be moved once the assembly is run. If interested, see Section 5

and 6 of [36] for the other optional sections that may appear.

The rest of this section will cover the decomposition and explanation of an example

assembly file in more detail. A simple program using the bubble sort algorithm [12] was

written in C# and compiled into “BubbleSort.exe” using the Mono 1.2.6’s C# compiler.

See Appendix A for the C# code and Appendix B for a print out of the assemblies byte

values. If one follows along using Appendix B, note that multibyte values are in little endian

format.

The assembly begins with the DOS Header (see Table C.1). Offsets in the assembly

file format are given in either offsets from the beginning of the file or as a Relative Virtual

Address (RVA). An RVA is the offset to a field from the beginning of that section plus

the virtual address that the section was loaded at. The DOS Header begins with the DOS

executable magic number 0x4d5a, which is ”MZ” in ASCII [45]. The next two fields give a

minimum length for the DOS file. The Pages in File field give the number of 512 byte pages

and the Last Page of File field is the number of remaining bytes in the last page. Therefore,

the entire file is at least 1168 bytes (((0x3-1)*512)+0x90 = 1160). The Relocations field

tells us there are no sections in the DOS file that are to be relocated when the file is loaded.

The Size of Header field is the size of this header in paragraphs, which is 16 bytes in length.

Therefore, this header is 4*16 or 64 (0x40) bytes, which is the size of the DOS Header up

to the DOS Stub field. The Min Paragraphs and Max Paragraphs field has the minimum

and maximum number of extra paragraphs of memory this DOS executable needs for a .bss

section. The .bss section is a block of memory allocated when the program is run and is

used for uninitialized data. The Min and Max Paragraphs are set to default values since

the DOS executable stub that follows does not need any extra memory [36].

87

The next two fields give the initial values for the Stack Segment (SS) register and

Stack Pointer (SP) register used when the DOS executable is loaded. The SS register

contains the address of the bottom of the system stack and the SP register contains the

address of the current frame on the system stack. The Checksum field is used to check

for modifications in the file since the Checksum field was calculated. Since the Checksum

field is 0x0, it is not used. The next two fields give the initial values for the Instruction

Pointer (IP) register and Code Segment (CS) register. The IP register contains the address

of the next instruction to execute. The CS register contains the address of the base of the

code section. The Relocation Table gives the offset from the beginning of this section to

the beginning of the code segment. Therefore, the code segment for this DOS file is 0x40

(0x0+0x40 = 0x40). At offset 0x40 is the stub of a DOS executable. Overlay number is

used if this file is part of a multi-file DOS executable. Since Overlay Number is 0x0, this

is the main part of the DOS executable. The Reserved field is not used and reserved for

future use. The OEM Identifier and OEM Information can be used to track who created

a DOS executable, but is not used here. The Reserved2 field is not used and reserved for

future use. The PE Signature Offset gives the offset to the PE Signatures [45].

Byte(s) Assembly Instruction Note

0e push cs Push code segment address

1f pop ds Pop code segment address into
data segment register

ba000e mov dx, offset message Load address of message

b409 mov ah, 9h 9h is OS’s print service

cd21 int 21h Call OS

b84c01 mov ax, 4c01h 4c01h is OS’s exit service

cd21 int 21h Call OS

5468 6973 2070 726f 6772
616d 2063 616e 6e6f 7420
6265 2072 756e 2069 6e20
444f 5230 6d6f 6465 2e0d
0d0a 24

message db “This program cannot
be run in DOS mode.”,0dh,0ah,’$’

message variable in data section

Table C.2: DOS stub instructions [24][45]

88

Offset RVA Name Value

84 84 Machine 014c

86 86 Number of
Sections

0003

88 88 Time/Date
Stamp

48f6
2181

8c 8c Pointer to
Symbol Table

0000
0000

90 90 Number of
Symbols

0000
0000

94 94 Optional
Header Size

00e0

96 96 Characteristics 010e

Table C.3: PE header

Offset RVA Name Value

98 98 Magic 010b

9a 9a LMajor 06

9b 9b LMinor 00

9c 9c Code Size 0000
0600

a0 a0 Initialized
Data Size

0000
0400

a4 a4 Uninitialized
Data Size

0000
0000

a8 a8 Entry Point
RVA

0000
2000

ac ac Base of Code 0000
2000

b0 b0 Base of Data 0000
4000

Table C.4: Standard fields

Next is the DOS Stub. If this assembly is run in DOS, the DOS Stub is loaded and

executed. The DOS Stub is a mix of Intel x86 assembly instructions and a data section (see

Table C.2 for how the DOS Stub from Table C.1 is decomposed). Note that in Table C.2,

numbers ending in the character ‘h’ are in hex format.

The code begins by pushing the code segment address. Then it pops the code

segment address into the data segment address. Therefore, the offset of the variable message

is calculated from the beginning of the code segment. This is done because the message

variable is placed right after the code. Next the offset of the message variable is loaded

and the Operating System (OS) is called to print the message. Then the exit service call is

executed by the OS. Finally, the message variable is declared. The 0x0d byte in the message

variable is a line-feed character and the 0x0a byte is a newline character. The ‘$’ character

is used as a null terminator for the string. The DOS Stub is padded with seven bytes of

zeros after this code.

Finally the PE Signature follows in Table C.1. The PE Signature contains the magic

number “PE\0\0” in ASCII. The PE Signature is used to mark the beginning of the PE

file after the DOS Header.

89

The PE Header table follow the PE Signature. The format of the PE Header can

be seen in Table C.3. At offset 0x84 is the Machine field. Since the Machine value is 0x14c,

this assembly was compiled on an Intel 386 or later machine. The Number of Sections

value indicates that there are three sections in this assembly. The Section Headers section

later in the assembly will list and give more information about each of these sections (see

Tables C.7, C.8, and C.9). If one looks ahead, one will see that these three sections are

the .text, .rsrc and .reloc sections. The Time/Date Stamp indicates the number of seconds

between January 1, 1970 12:00:00 AM and the date and time this assembly was created.

Therefore, this assembly was created on October 15, 2008 12:59:45 PM (January 1, 1970

12:00:00 + 0x48f62181 seconds = October 15, 2008 12:59:45 PM).

The Pointer to Symbol Table and Number of Symbols fields contain an offset to the

symbol table and number of symbols in the symbol table. Since the Pointer to Symbol Table

and Number of Symbols is zero, there is not an embedded symbol table in this assembly.

The Optional Header Size indicates the total size of three optional tables if they exist. The

first of these optional tables is the Standard Fields and it’s size is 28 bytes. The second

optional table is the NT Specific table and it’s size is 68 bytes. The last optional table is the

Data Directories table and it’s size is 128 bytes. Since all three of these optional tables exist,

the Optional Header Size is 0xe0 (28 + 68 + 128 = 224 or 0xe0). The Characteristics field

indicates the attribute flags of this assembly. The four flags that are set are 0x0100, which

means that this is a 32 bit-word based assembly, 0x0008, which means that the symbol

table has been removed, 0x0004, which means that line numbers have been removed, and

0x0002, which means that this is an executable file [37].

The Standard Fields table, as shown in Table C.4, follows at offset 0x98. The 0x010b

value in the Magic field means this is an executable file. The LMajor and LMinor fields

contain the major and minor numbers of the linker used to create this assembly. The Code

90

Size field indicates that the size of the .text section is 0x600 bytes. The Initialized Data

Size field means that the .rsrc section is 0x400 bytes long and a zero in the Uninitialized

Data Size field means there is no .bss section. The .bss section is a block of memory created

at runtime to hold uninitialized data.

Recall that a Relative Virtual Address (RVA) is calculated by adding the offset

from the beginning of a section to a field and the virtual address that that section begins

at. The Base of Code field indicates that the .text section will be loaded at the virtual

address 0x0000 2000. The Entry Point RVA value of 0x2000 means that the Entry Point

table begins at the first byte of the .text section. The Base of Data field indicates that

the .rsrc section begins at virtual address 0x0000 4000. These virtual addresses are used to

calculate any RVAs used in these sections.

Offset RVA Name Value

b4 b4 Image Base 0040 0000

b8 b8 Section Alignment 0000 2000

bc bc File Alignment 0000 0200

c0 c0 OS Major 0004

c2 c2 OS Minor 0000

c4 c4 User Major 0000

c6 c6 User Minor 0000

c8 c8 SubSys Major 0004

ca ca SubSys Minor 0000

cc cc Reserved 0000 0000

d0 d0 Image Size 0000 8000

d4 d4 Header Size 0000 0200

d8 d8 File Checksum 0000 0000

dc dc SubSystem 0003

de de DLL Flags 0000

e0 e0 Stack Reserved Size 0010 0000

e4 e4 Stack Commit Size 0000 1000

e8 e8 Heap Reserved Size 0010 0000

ec ec Heap Commit Size 0000 1000

f0 f0 Loader Flags 0000 0000

f4 f4 Number of Data Directories 0000 0010

Table C.5: NT specific

The NT Specific section directly follows the Standard Fields section (see Table C.5).

The Image Base field gives the preferred address the beginning of the assembly should be

91

loaded at. The Section Alignment value means that every section in the assembly, like the

.text, .rsrc, and .reloc sections, must have a size that is a multiple of 0x0000 2000 bytes.

The File Alignment value means that the total assembly, from the first byte of the DOS

Header to the last byte of the .reloc section, must have a size that is a multiple of 0x0000

0200 bytes. Sections are padded with zero bytes to make sure that they are aligned. The

OS, User, and SubSys major and minor numbers give version information about the OS

and system used to create this assembly. The Mono C# compiler set these to default values

to mimic the Microsoft .NET compilers. The Reserved field is not used and reserved for

future use.

The Image Size field contains the value of the total number of bytes used by the

entire assembly in memory. The Section Headers later in Tables C.7 to C.9 give the virtual

addresses used by each section. The Header Size field is the combined sizes of all the tables

from the DOS Header to the beginning of the .text section.

The File Checksum field is used to detect if the assembly has been modified. Since

the File Checksum field is set to zero, it is not used in this example. The SubSystem field

tells what version of the Windows kernel subsystem is expected to run this assembly. A

value of 0x0003 for the SubSystem field means that this assembly is expected to run in

the Windows character subsystem (i.e., Window’s command-line). The DLL Flags field

contains flags for various miscellaneous flags for how DLL’s should run, but none are set in

this example. The Stack Reserved Size field tells how many bytes this assembly expects to

use for it’s stack. The Stack Commit Size field tells how many bytes to add to the stack

each time if the assembly goes over what it has reserved with the Stack Reserved Size. The

Heap Reserved Size and Heap Commit Size serve the same purpose except they are used

to record how much memory to allocate for the heap. The Loader Flags are reserved and

at this time there are no flags defined, but in the future they may be added. The Number

92

of Data Directories field tells the number of entries in the next table. Therefore, there are

0x0000 0010 (or 16) Data Directories in the next table.

Offset RVA Name Value

f8 f8 Export Table 0000 0000 0000 0000

100 100 Import Table 0000 004f 0000 2018

108 108 Resource Table 0000 02e4 0000 4000

110 110 Exception Table 0000 0000 0000 0000

118 118 Certificate Table 0000 0000 0000 0000

120 120 Base Relocation Table 0000 000c 0000 6000

128 128 Debug 0000 0000 0000 0000

130 130 Copyright 0000 0000 0000 0000

138 138 Global Ptr 0000 0000 0000 0000

140 140 TLS Table 0000 0000 0000 0000

148 148 Load Config Table 0000 0000 0000 0000

150 150 Bound Import 0000 0000 0000 0000

158 158 Import Address Table 0000 0008 0000 2010

160 160 Delay Import Descriptor 0000 0000 0000 0000

168 168 CLI Header 0000 0048 0000 2064

170 170 Reserved 0000 0000 0000 0000

Table C.6: Data directories

Next is the Data Directories table (see Table C.6). Each entry in the Data Directories

contains an encoded size and RVA for a table that follows later in the assembly. If the

encoded value is 0x0000 0000 0000 0000, then the table does not exist. The first four bytes

is the size of the section and the last four bytes is the RVA of the section. For example,

since the Import Table has a value of 0x0000 004f 0000 2018, the size of the Import Table is

0x0000 004f and it’s RVA is 0x0000 2018. Also, since the Base of Code field in the Standard

Fields (see Table C.4) is 0x0000 2000, the Import Table is 0x18 bytes after the beginning of

the .text section. The Import Table contains RVA’s of other tables like the Import Lookup

Table, the Import Address Table, and the Name Table, which are explained when they are

encountered later in the assembly.

The .rsrc section is represented by the Resource Table at offset 0x108. Since the

Resource Table has the value 0x0000 02e4 0000 4000, the .rsrc section begins at RVA 0x0000

2000 and has a size of 0x0000 02e4. Note that this information about the .rsrc section is

93

repeated in the .rsrc Section Header covered later in Table C.8. The Base Relocation Table

represents the .reloc section and is also repeated later in Table C.9. The Import Address

Table gives the RVA and size of the Import Address Table seen later in Table C.10. The

CLI Header field give the RVA and size of the table with additional information about

the CLI system used by this assembly. Other tables not used here are the Debug table

that contains debug information generated and inserted into the assembly at compile time,

the Exception Table which give the RVA and size of the table that contains the exception

handler information in the assembly, the Copyright field which contains the RVA and size

of a table that contains the copyright information about this assembly, and the Certificate

Table which contains the RVA and size of the table that contains the public and private

key cryptography information used in digitally signing an assembly [37].

Offset RVA Name Value

178 178 Name 2e74 6578
7400 0000

180 180 Virtual Size 0000 0590

184 184 Virtual Address 0000 2000

188 188 Size of Raw
Data

0000 0600

18c 18c Pointer To
Raw Data

0000 0200

190 190 Pointer To
Relocations

0000 0000

194 194 Pointer To
Line Numbers

0000 0000

198 198 Number of
Relocations

0000

19a 19a Number of
Line Numbers

0000

19c 19c Characteristics 6000 0020

Table C.7: Section header: .text

Offset RVA Name Value

1a0 1a0 Name 2e72 7372
6300 0000

1a8 1a8 Virtual Size 0000 02e4

1ac 1ac Virtual Address 0000 4000

1b0 1b0 Size of Raw
Data

0000 0400

1b4 1b4 Pointer To
Raw Data

0000 0800

1b8 1b8 Pointer To
Relocations

0000 0000

1bc 1bc Pointer To
Line Numbers

0000 0000

1c0 1c0 Number of
Relocations

0000

1c2 1c2 Number of
Line Numbers

0000

1c4 1c4 Characteristics 4000 0040

Table C.8: Section header: .rsrc

Next are the Section Headers beginning at offset 0x178. The Number of Sections

field at offset 0x86 in the PE Header (see Table C.3) indicates that there are 0x0003 sections.

Each of the three section has a Section Header with the same fields but with different values

94

Offset RVA Name Value

1c8 1c8 Name 2e72 656c 6f63 0000

1d0 1d0 Virtual Size 0000 000c

1d4 1d4 Virtual Address 0000 6000

1d8 1d8 Size of Raw Data 0000 0200

1dc 1dc Pointer To Raw Data 0000 0c00

1e0 1e0 Pointer To Relocations 0000 0000

1e4 1e4 Pointer To Line Numbers 0000 0000

1e8 1e8 Number of Relocations 0000

1ea 1ea Number of Line Numbers 0000

1ec 1ec Characteristics 4200 0040

Table C.9: Section header: .reloc

in each field. The first Section Header is for the .text section (see Table C.7). The ASCII

value “.text\0\0\0” is contained in the Name field. The Virtual Size contains the value

0x0000 0590, which is the size of the .text section without the padding. The Virtual Address

field indicates that the .text section begins at RVA 0x0000 2000. The Size of Raw Data

indicates that the .text section is 0x0000 0x0600 bytes in size with padding. The Pointer

To Raw Data field tells us that the .text section begins at offset 0x0000 0x0200. Since

there are no relocations or line numbers, the next four fields are zero. The Characteristics

field contains flags for the .text section. Three flags are set for the .text section: contains

executable code (0x0000 0002), section can be executed as code (0x2000 0000), and section

can be read (0x4000 0000).

Offset RVA Name Value

210 2010 Hint/Name Table RVA 0000 2040

Table C.10: Import address table

The fields in the Section Header for the .rsrc (see Table C.8) and .reloc (see Ta-

ble C.9) sections can be understood similar to the ones for the .text section. The Charac-

teristic flags for the .rsrc section are section can be read (0x4000 0000) and section contains

initialized data (0x0000 0040). The Characteristic flags for the .reloc section are section

95

Offset RVA Name Value

218 2018 ImportLookupTable RVA 0000 205a

21c 201c DateTime Stamp 0000 0000

220 2020 Forward Chain 0000 0000

224 2024 Name RVA 0000 204e

228 2028 ImportAddressTable RVA 0000 2010

Table C.11: Import table

can be read (0x4000 0000), section can be discarded (0x0200 0000) and section contains

initialized data (0x0000 0040). Since each section must begin on an offset that is a multiple

of 0x0200 and the .text section is next, the assembly is padded with zero bytes from the

end of the .reloc Section Header at offset 0x1f0 to offset 0x200. Therefore the .text section

must begin at 0x0200 because it is the closest multiple of the File Alignment field from the

NT Specific table at Table C.5.

The .text section follows next at offset 0x200 and RVA 0x2000. The Import Address

Table (see Table C.10) begins at RVA 0x2010. The Import Address Table contains the RVA

of the Hint/Name Table. Four bytes of padding follow the Import Address Table. The

purpose of the Import Address Table is to find the Hint/Name Table RVA.

Next is the Import Table (see Table C.11) at RVA 0x2018. The Import Table

contains the Import Lookup Table’s RVA and the Import Address Table’s RVA. The rest

of the Import Table concerns itself with information about the CorExeMain method in

mscoree.dll. The DateTime Stamp field is set to 0x0000 0000 in this assembly, but is later

loaded with the Date/Time Stamp of an external DLL called mscoree.dll, which is loaded to

run the CorExeMain method. The Name RVA field contains the RVA to the ASCII string of

name of the DLL to load. Since the Forward Chain is set to zero, the DLL that is referenced

in the Name RVA field is the DLL that the ImportTable is looking for and not a forward

reference to another one. The Import Table is followed by 20 bytes of undocumented zeros.

96

Offset RVA Name Value

240 2040 Hint 0000

242 2042 Name 5f43 6f72 4578 654d 6169 6e00

24e 204e Name 6d73 636f 7265 652e 646c 6000

Table C.12: Hint/Name table

Offset RVA Name Value

25a 205a Hint/Name Table RVA 0000 2040

Table C.13: Import lookup table

The Hint/Name Table (see Table C.12) follows at RVA 0x2040. The Hint/Name

Table contains the names of the main library of the Virtual Machine called “mscoree.dll\0”

and the method that begins the execution of this assembly called “ CorExeMain\0”. The

Import Lookup Table (see Table C.13) that follows at RVA 0x205a contains the Hint/Name

Table’s RVA. The Import Lookup Table is used to find the Hint/Name Table. Six bytes of

padding follow the Import Lookup Table to being it to a four byte alignment.

Offset RVA Name Value

264 2064 Cb 0000 0048

268 2068 Major Runtime Version 0002

26a 206a Minor Runtime Version 0000

26c 206c Metadata 0000 0000 0000 22e8

274 2074 Size of Metadata 0000 02a8

278 2078 Flags 0000 0001

27c 207c Entry Point Token 0600 0004

280 2080 Resources 0000 0000 0000 22e8

288 2088 Strong Name Signature 0000 0000 0000 0000

290 2090 Code Manager Table 0000 0000 0000 0000

298 2098 VTable Fixups 0000 0000 0000 0000

2a0 20a0 Exported Address Table Jumps 0000 0000 0000 0000

2a8 20a8 Managed Native Header 0000 0000 0000 0000

Table C.14: CLI header table

The CLI Header (see Table C.14) follows next at RVA 0x2064. The CLI Header

contains information about the CLI framework that the assembly was built against. The

Cb field contains the size of the CLI Header in bytes. The Major and Minor Runtime

Version fields contain the the minimum version of the framework this assembly needs to

97

run. In this case, this assembly needs at least a 2.0 .NET-compatible framework. The

Metadata and Size of Metadata fields gives the RVA and size of the Metadata table, which

is a large table containing class, method and metadata information about this assembly.

The Flags field has one flags set: assembly contains CIL only code (0x0000 0001).

The Entry Point Token field contains an encoded token that references the Main()

method in this assembly. The encoded token is comprised of two pieces: a table and row

number. The highest byte of the token contain the table number and the lower three bytes

contain the row number. In this case, the Entry Point Token 0x0600 0004 point to row

0x00 0004 in table 0x06. Table 0x06 is the MethodDef table and row 0x00 0004 contains

the necessary information to look the Main() method up. More information about how to

lookup methods, classes and fields will follow later in the Metadata section (see Table C.19

to Table C.39).

Offset RVA Name Value

2ec 20ec Type/Size 1330

2ee 20ee Max Stack 001f

2f0 20f0 Code Size 0000 0106

2f4 20f4 LocalVarSig Token 1100 0001

2f8 20f8 Code 02280a00000102730a0000027d04000001027b040000011f5b8c01
0000036f0a00000326027b040000011b8c010000036f0a00000326
027b040000011f658c010000036f0a00000326027b04000001198c
010000036f0a00000326027b040000011f3a8c010000036f0a0000
0326027b040000011ff28c010000036f0a00000326027b04000001
20000000c78c010000036f0a00000326027b040000011f2c8c0100
00036f0a00000326027b04000001178c010000036f0a0000032602
7b0400000120000002a68c010000036f0a00000326022806000002
160a3800000015027b04000001066f0a000004280a000005161758
0a06027b040000016f0a0000063fffffffda2a

Table C.15: Method header - public BubbleSort()

The Resources field hold the RVA of CLI resources. An assembly can be given what

is called a Strong Signature. A Strong Signature is a way to uniquely identify an assembly.

Four fields are used in a Strong Signature: Assembly Name, Version, Culture, and a Public

Key Token [50]. If an assembly had a Strong Signature, the Strong Name Signature field

98

would contain an RVA and size to reference it. Since the VTable Fixups field is set to

zero, there are no sections to relocate. If an assembly contains native code, the Exported

Address Table Jumps and Managed Native Header fields would be used to load, jump to

and execute it. After the CLI Header is 60 bytes of padding until the first Method Header

at 0x2ec.

Offset RVA Name Value

400 2200 Type/Flags 1330

402 2202 Max Stack 000e

404 2204 Code Size 0000 0086

408 2208 LocalVarSig Token 1100 0002

40c 220c Code 160c380000006d160a3800000051160b3800000035027b04000001066
f0a00000479010000034a027b04000001076f0a00000479010000034a
3c0000000802060728060000030717580b07027b040000016f0a00000
63fffffffba0617580a06027b040000016f0a0000063fffffff9e0817
580c08027b040000016f0a0000063fffffff822a

Table C.16: Method header - private void doBubbleSort()

Offset RVA Name Value

494 2294 Type/Flags 1330

496 2296 Max Stack 000a

498 2298 Code Size 0000 003e

49c 229c LocalVarSig Token 1100 0003

4a0 22a0 Code 027b04000001036f0a00000479010000034a0a027b0400000103027
b04000001046f0a0000046f0a000007027b0400000104068c010000
036f0a0000072a

Table C.17: Method header - public void swap(int first,int second)

Method Headers are next and each Method Header represents one method in the

assembly. Method Headers are one of two types, either Tiny or Fat. If bits zero and one

of the first byte of the Method Header are B10, then it is a Tiny method. If the same two

bits are instead B11, then it is a Fat method. For example, the first Method Header’s (see

Table C.15) type is Fat because bit zero and one of 0x13 are B11. If a Fat method, in the

first two bytes, bits 12 through 15 give the size of this Method Header except the Code. In

this case, bits 12 to 15 are B0011. Therefore the total size used for the Type/Size, Max

99

Stack, Code Size, and LocalVarSig Token fields is three 4-byte integers.

All Fat methods have the same five fields shown in Table C.15. The Max Stack field

indicates the maximum depth the stack every gets during execution. The Code Size field

tells how many bytes the upcoming Code field is. When fields need to reference a Metadata

table, a token is used. The LocalVarSigToken is a token that references table 0x11, which is

the LocalVarSig metadata table, at row 0x1. This row of the LocalVarSig table contains the

type information about the local variables in this method. Then the Common Intermediate

Language (CIL) code follows in this Fat method. The CIL instruction format was covered

in Section 2.3. Table C.16 and Table C.17 also contain Method Headers that are Fat.

Offset RVA Name Value

4e0 22e0 Type/Flags 1e

4e1 22e1 Code 7306000001262a

Table C.18: Method header - public static void Main()

Offset RVA Name Value

4e8 22e8 Signature 42534a42

4ec 22ec Major Version 0001

4ee 22ee Minor Version 0001

4f0 22f0 Reserved 0000 0000

4f4 22f4 Length 0000 000c

4f8 22f8 Version 7631 2e31 2e34
3332 3200 0000

504 2304 Flags 0000

506 2306 Streams 0005

Table C.19: Metadata root

Table C.18 contains the first Tiny Method Header. The Tiny Method Header type

only contains the Type/Flags and the Code fields. After masking out the bits not used by

the Tiny/Fat flag (bits 2 to 7) from the Type/Flags field, B000111 is returned. Therefore,

Code Size is 7 bytes. The Code field contains the Common Intermediate Language (CIL)

instruction bytes. Whether a Method Header is encoded as Tiny or Fat depends on certain

100

features of the method. If code size can fit in 6 or less bits, there are no exceptions, no

local variables and the maximum depth of the stack is equal to or less than eight, then the

method is Tiny. If any of these conditions fail, then it is a Fat method [37].

Next is the Metadata Root (see Table C.19) at RVA 0x22e8. The Metadata Root

begins the metadata section of the assembly. The ASCII string “BSJB” is contained in

the Signature field. The Signature field is a magic number to mark the beginning of the

Metadata Root. The Major and Minor Version fields indicate that the metadata section in

this assembly is encoded using the 1.1 version of the CLI specification. The Reserved field

is reserved for future use. The Length field contains the length of the version string that

follows. Therefore the 0x0000 000c bytes that follow is the Version field. The ASCII string

“v1.1.4322” is in the Version field. This is the major, minor and build number of the .NET

Framework this assembly was built with. The Mono C# compiler that was used to build

this assembly mimicked that version of the .NET Framework in order to insure portability.

Since the Flags field is 0x0000, there are no flags for the metadata in this assembly. Finally,

the Streams field indicates that there are 0x0005 streams in this assembly. The content

of these five streams (#˜, #Strings, #US, #Blob, and #GUID) are covered later (see

Tables C.25 to C.39).

Offset RVA Name Value

508 2308 Offset 0000 0070

50c 230c Size 0000 0124

510 2310 Name 237e 0000

Table C.20: Stream header - #˜

Offset RVA Name Value

514 2314 Offset 0000 0194

518 2318 Size 0000 00c0

51c 231c Name 2353 7472 696e
6773 0000 0000

Table C.21: Stream header - #Strings

After the Method Headers, comes five similar headers that describe persistent streams

in the assembly. These five streams are #˜, #US, #Strings, #Blob, and #GUID. The #˜

stream contains information about the metadata tables later in the assembly.

101

Offset RVA Name Value

528 2328 Offset 0000 0254

52c 232c Size 0000 0004

530 2330 Name 2355 5300

Table C.22: Stream header - #US

Offset RVA Name Value

534 2334 Offset 0000 0258

538 2338 Size 0000 0040

53c 233c Name 2342 6c6f
6200 0000

Table C.23: Stream header - #Blob

Offset RVA Name Value

544 2344 Offset 0000 0298

548 2348 Size 0000 0010

54c 234c Name 2347 5549 4400 0000

Table C.24: Stream header - #GUID

Offset RVA Name Value

558 2358 Reserved1 0000 0000

55c 235c Major Version 01

55d 235d Minor Version 00

55e 235e Heap Sizes 00

55f 235f Reserved2 01

560 2360 Valid 0000 0009 0002 0557

568 2368 Sorted 0000 0000 0000 0000

570 2370 Table Rows 0000 0001 0000 0004 0000 0002 0000 0001 0000 0004
0000 0002 0000 0007 0000 0003 0000 0001 0000 0001

Table C.25: #˜ stream

The #US stream contains string literals that were in the original source code. The

#Strings stream contains method and field names and other compiler generated strings. The

#Blob stream contains encoded types used by the metadata tables later in the assembly.

The #GUID stream contains Global Unique Identifiers (GUID) used to uniquely identify

assemblies. Each stream header has an Offset field that tells the offset from the beginning

of the Metadata Root (see Table C.19) to that stream. For example, 0x22e8 plus 0x0000

0070 equals 0x2358, which is the RVA of the #˜ stream. The Size field contains the size

of the stream in bytes. For example, the #GUID stream is 0x0000 0010 bytes long. The

final field, Name, gives a string representation of the name of the stream. For example, the

ASCII string “#GUID” is stored in the bytes 0x2347554944 in Table C.24.

102

The #˜ stream (see Table C.25) is next at RVA 0x2358. The Reserved1 and Re-

served2 fields are reserved for future use and not used now. The Major and Minor Version

fields represent the version of how the metadata is encoded in this assembly. The Heap

Sizes field is a bit field that contains a flag if a stream (or sometimes called a heap the CLI

specification) has a size that is greater than or equal to 65, 536 bytes. If the #Strings bit is

set (0x01), then all indexes into the #Strings stream encoded in this assembly are 4-bytes

wide. If that bit is not set, then indexes into the #Strings stream are 2-bytes wide. Since

none of the bits are set in the Heap Sizes field, then all stream (or heap) indexes are 2-bytes

wide. The Valid field is a bit vector that has a bit set for each Metadata table that come

later in the assembly. According to the Valid field, this assembly contains the Module Table,

TypeRef Table, TypeDef Table, Field Table, MethodDef Table, Param Table, MemberRef

Table, StandAloneSig Table, Assembly Table, and the AssemblyRef Table (see Table C.26

to Table C.35). Next is the Sorted field, which is a bit vector that contains a bit for each

metadata table that is sorted. Since the Sorted field is 0x0000 0000 0000 0000, none of the

metadata tables are sorted according to any criteria. Next is the Table Rows field, which is

a list of 4-byte integers, one for each metadata table in this assembly. Each 4-byte integer

in the Table Rows field gives the number of rows in each metadata table. For example, the

Module Table has one row and the TypeRef Table has four rows. Note that the first row of

a metadata table is indexed as 1 and not 0.

Offset RVA Generation Name Mvid Encld EncBaseId

598 2398 0000 0087 0001 0000 0000

Table C.26: Module table

The first metadata table is the Module Table (see Table C.26) at RVA 0x2398.

The Module Table contains a row for each module that is in this in this assembly. CLI-

compliant code can be compiled into separate modules and combined into one assembly, but

103

this assembly only contains one module. The Generation value is reserved and not used. The

Name field is an byte index into the #Strings stream. The ASCII string “BubbleSort.exe”

is at byte index 0x87. The Mvid field is an index into the #GUID stream for a GUID used

to distinguish two modules if they have the same name. Therefore, row 1 in the #GUID

stream (see Table C.39) contains this assembly’s unique GUID. The Encld and EncBaseId

fields are reserved and not used.

Offset RVA ResolutionScope Name Namespace

5a2 23a2 0006 000a 0011

5a8 23a8 0006 001e 0028

5ae 23ae 0006 003b 0011

5b4 23b4 0006 004e 0011

Table C.27: TypeRef table

Offset RVA Flags Name Namespace Extends FieldList MethodList

5ba 23ba 0000 0000 007e 0000 0000 0001 0001

5c8 23c8 0010 0001 0073 0000 0005 0001 0001

Table C.28: TypeDef table

The next metadata table is the TypeRef Table (see Table C.27) at RVA 0x23a2.

Each of the four rows in the TypeRef Table represents an external type that is referenced in

this assembly. The ResolutionScope is an encoded index into either the Module, ModuleRef,

AssemblyRef or TypeRef Table that represents the module or assembly this type came from.

Take row one for example. Since bits 0 and 1 are B10 in the ResolutionScope 0x0006, this

is an index into the AssemblyRef Table [37]. Module uses B00, ModuleRef uses B01 and

TypeRef uses B11 in bits 0 and 1 to represent these tables. The other 14 bits represent the

row number [37]. Therefore the ResolutionScope of the first row refers to row 0x0001 of the

AssemblyRef Table. The Name field is an byte index into the #Strings stream that contains

the name of this type. For example, row one’s name references the ASCII string “Object”

104

using it’s offset 0x000a into the #Strings stream. The Namespace field is a byte index into

the #Strings stream with the string representation of the namespace this type is in. For

example, the string “System” is pointed at by row one’s Namespace field. Therefore, row

one represents the external type System.Object.

The next metadata table to cover is the TypeDef Table (see Table C.28) at RVA

0x23ba. Each row in the TypeDef Table represents the types that are defined in this

assembly. The Flags field is a bitset of flags that represent the visibility of a type. For

example, row two has the Public flag (0x0000 0001), which means this type is globally

visible, and the BeforeFieldInit flag (0x0010 0000), which indicates non-static fields must

be initialized before static fields can be accessed.

The Name and Namespace fields are indexes into the #Strings stream, which con-

tains the string representation of this type. The Extends field is an encoded index into either

the TypeDef, TypeRef, or TypeSpec Table. Bits 0 and 1 are used to encode which table:

TypeDef (B00), TypeRef (B01), and TypeSpec (B10) [37]. The other 14 bits represent

the row number [37]. Therefore, row two’s Extends field (0x0005) is encoded as TypeRef

Table and row 1. TypeRef row 1 represents the “System.Object” type. Therefore, this type

extends (or inherits) from the System.Object type.

Offset RVA Flags Name Signature

5d6 23d6 0001 0096 0027

Table C.29: Field table

The FieldList field indexes into the Field Table to show which fields go with this

type. The index into the Field Table is the start of a line of fields that belong to that

type. The line ends when either the Field Table ends or the next types fields begin. The

MethodList is an index into the MethodDef Table that represents the line of methods that

belong to a certain type. Therefore, in this example, row 2 represents the “BubbleSort”

105

type whose methods start at row 1 of the MethodDef Table and whose fields start at row 1

of the Field Table.

Next is the Field Table (see Table C.29). Each row in the Field Table represents a

field that belongs to a type. The Flags field is a bitset that represents the access permissions

of the field. For example, the Flag field in row one has the private flag (0x0001) set. The

Name field is an index into the #Strings stream, which contains the string representation of

the name of this field. In this case, the ASCII string “nums” is referenced by the Name field

in row one. The Signature field is a index into the #Blob stream that represents the type

of this field. Thus, this encodes the private “nums” field seen in the Bubble Sort source

code in Appendix A.

Offset RVA RVA ImplFlags Flags Name Signature ParamList

5dc 23dc 0000 20ec 0000 1886 0018 0001 0001

5ea 23ea 0000 2200 0000 0081 009b 0001 0001

5f8 23f8 0000 2294 0000 0096 0086 00a8 0035

606 2406 0000 22e0 0000 0096 00ba 003b 0003

Table C.30: MethodDef table

Next is the MethodDef Table (see Table C.30). Each row in the MethodDef Table

represents a method that is defined in this assembly. The RVA field (column three in

Table C.30) is the RVA to the Method Header that contains the information and CIL about

the method this row refers to. The ImplFlags field contains flags like method is implemented

in CIL (0x0000) and method is implemented in native (0x0001). The Flags field contains

flags for the visibility of this method. The Name field indexes into the #Strings stream

with the ASCII representation of the name of this method. The Signature field is an index

into the #Blob stream, which contains the encoded representation of the parameters and

return type of this method. The ParamList field is an index into the Param Table, which

starts a line of parameters that belong to this method.

106

For example, the RVA field in row one references Table C.15, which is the method

header for the BubbleSort constructor. The ImplFlags for row one is 0x0000 because the

method is implemented in CIL. The Flags field has the RTSpecialName (0x1000), Special-

Name (0x0800), HideBySig (0x0080), and Public (0x0006) flags set. The first two flags

are set because this method is treated special because it is a constructor. The third flag

tells how inheritance should hide this method if it is overridden [37]. The last flag tells

the visibility of this method. The Name value references offset 0x694 (0x67c + 0x0018 =

0x694) in the #Strings stream. The ASCII string ”.ctor” is at this offset into the #Strings

stream. This string is the internal name for constructors.

The Signature value references offset 0x741 (0x0740 + 0x0001 = 0x0741) in the

#Blob stream (see Table C.38), which contains the bytes 0x3020 0001. The first byte is

the size of the #Blob row minus the size byte. The next byte is the calling conventions for

the method. The next byte contains the number of parameters. Therefore, the BubbleSort

constructor has no parameters. The next byte encodes the return type. Since this is

a constructor, the magic number ELEMENT TYPE VOID (0x01) is used. What would

follow, if this method had parameters, would be an encoded value or magic number for each

parameter.

The ParamList field is an index into the Param table that begins the list of param-

eters for this method. This list ends when the next begins or the table ends. Note that

the method represented by row two has parameters that start at index 1. Therefore, the

BubbleSort constructor has parameters row one to one, which represents no parameters.

Offset RVA Flags Sequence Name

614 2414 0000 0001 00ad

61a 241a 0000 0002 00b3

Table C.31: Param table

107

Next is the Param Table (see Table C.31). Each row in the Param Table represents

one parameter used by a method. The Flags field contains flags about the usage of a

parameter. The Flags field contains flags about whether a parameter is called by reference

or by value. The Sequence field contains the number of total parameters in the method

that own this parameter. The Name field is a byte index into the #Strings stream which

contains the ASCII representation of the parameters name.

Offset RVA Class Name Signature

620 2420 0009 0018 0001

626 2426 0011 0018 0001

62c 242c 0011 0041 000e

632 2432 0011 0045 0013

638 2438 0021 0056 0018

63e 243e 0011 0060 001d

644 2444 0011 006a 0021

Table C.32: MemberRef table

Next is the MemberRef Table (see Table C.32). Each row in the MemberRef Table

represents either a reference to an external method or field in another assembly. The Class

field is an encoded index into either the TypeRef, ModuleRef, MethodDef, TypeSpec, or

TypeDef Table. Bits 0 and 1 are used to determine which table and the other 14 bits is

the row number [37]. For example, row one indexes into the TypeRef Table at row two.

The Name field is a byte index into the #Strings stream, which represents the name of

this external field or method. The Signature field is a byte index into the #Blob stream,

which contains either the type of the external field or the parameters and return type for

the external method.

Offset RVA Signature

64a 244a 002b

64c 244c 002f

64e 244e 002b

Table C.33: StandAloneSig table

108

Next is the StandAloneSig Table (see Table C.33). Each row of the StandAlongSig

Table is referenced by a Method Header. The Signature field is a byte index into the #Blob

stream, which contains the encoded types of the local variables in a method.

Offset RVA Hash Major Minor Build Rev Flags Public Name Culture

650 2450 0000 8004 0000 0000 0000 0000 0000 0000 0000 0073 0000

Table C.34: Assembly table

The Assembly Table (see Table C.34) is next. The Assembly Table always has one

row and describes the assembly it is contained in. Therefore, row one of the Assembly

Table describes the BubbleSort assembly. The Hash field contains a constant that describes

what hashing algorithm was used to build the Strong Name for this assembly. Since the

BubbleSort assembly does not have a Strong Name, this value is not set. The absence for a

Strong Name is also the reason there is no Major, Minor, Build and Revision numbers for

this assembly.

The Flags field is a bitset containing flags about the assembly. Some of these

flags are DisableJITCompilerOptimizer (0x4000) and PublicKey (0x0001), which means

this assembly has a Public/Private key pair [37]. In this case none of the flags in the Flags

field are set for the BubbleSort assembly.

Offset RVA Major Minor Build Rev Flags Public Name Culture Hash

666 2466 0001 0000 1388 0000 0000 0000 0005 0001 0000 0000

Table C.35: AssemblyRef table

The Public field is a byte index into the #Blob heap, which contains the public key

for this assembly. The Name field is a byte index into the #Strings stream, which contains

the ASCII name of this assembly. The Culture field is a byte index into the #Strings

stream, which contains the ASCII representation of language used in this assembly.

109

Offset RVA Value String

67c 247c 00

67d 247d 6d73 636f 726c 6962 00 mscorlib

686 2486 4f62 6a65 6374 00 Object

68d 248d 5379 7374 656d 00 System

694 2494 2e63 746f 7200 .ctor

69a 249a 4172 7261 794c 6973 7400 ArrayList

6a4 24a4 5379 7374 656d 2e43 6f6c 6c65 6374 696f 6e73 00 System.Collections

6b7 24b7 496e 7433 3200 Int32

6bd 24bd 4164 6400 Add

6c1 24c1 6765 745f 4974 656d 00 get Item

6ca 24ca 436f 6e73 6f6c 6500 Console

6d2 24d2 5772 6974 654c 696e 6500 WriteLine

6dc 24dc 6765 745f 436f 756e 7400 get Count

6e6 24e6 7365 745f 4974 656d 00 set Item

6ef 24ef 4275 6262 6c65 536f 7274 00 BubbleSort

6fa 24fa 3c4d 6f64 756c 653e 00 ¡Module¿

703 2503 4275 6262 6c65 536f 7274 2e65 7865 00 BubbleSort.exe

712 2512 6e75 6d73 00 nums

717 2517 646f 4275 6262 6c65 536f 7274 00 doBubbleSort

724 2524 7377 6170 00 swap

729 2529 6669 7273 7400 first

72f 252f 7365 636f 6e64 00 second

736 2536 4d61 696e 00 Main

73b 253b 00

Table C.36: #Strings stream

Offset RVA Value String

73c 253c 00

73d 253d 00

73e 253e 00

73f 253f 00

Table C.37: #US stream

The AssemblyRef Table (see Table C.35) is next. Each row in the AssemblyRef

Table defines an external assembly that is referenced by this assembly. The Major, Minor,

Build and Revision fields give the versioning information about the external assembly. The

Flags field contains the same type of flags that the Assembly Table (see Table C.34) has.

The Public field is a byte index into the #Blob stream, which contains the assemblies public

key. The Culture field is a byte index into the #Strings stream, which contains the ASCII

representation of the local language or geographic area used in the assembly. The Hash

110

field field is a byte index into the #Blob stream, which contains the hash for the assembly

that is referenced. At the end of the AssemblyRef Table is two bytes of zero padding.

Next is the #Strings stream (see Table C.36) starting at RVA 0x247c. The #Strings

stream is a byte stream of ASCII strings separated by the null character. The #Strings

stream is used by many parts of the assembly including the metadata sections.

Next is the #US stream (see Table C.37) starting at RVA 0x253c. The #US (or

User String) stream is a byte stream of ASCII strings that were string constants used by

the programmer in the original source code. Since there were no string constants in the C#

code in Appendix A, the #US stream is empty. The four null bytes were added because

the size of each stream must be a multiple of four.

Offset RVA Byte(s)

740 2540 00

741 2541 0320 0001

745 2545 08b7 7a5c 5619 34e0 89

74e 254e 0420 0108 1c

753 2553 0420 011c 08

758 2558 0400 0101 1c

75d 255d 0320 0008

761 2561 0520 0201 081c

767 2567 0306 1209

76b 256b 0307 0108

76f 256f 0507 0308 0808

775 2575 0520 0201 0808

77b 257b 0300 0001

77f 257f 00

Table C.38: #Blob stream

The #Blob stream is next (see Table C.38) starting at RVA 0x2540. The #Blob

stream contains encoded type information about method parameters, fields and local vari-

ables. Take the swap method for example (see Appendix A). It takes two int’s as parameters

and returns void. The swap method is represented by the third row in the MethodDef table

(see Table C.30). Note the value of the name column, 0xa8. This offset points to offset

0x724 (0x67c + 0xa8 = 0x724) in the #Strings stream (see Table C.36). The ASCII string

111

“swap” is at this offset into the #Strings stream. The ParamList in the same row of the

MethodDef table contains the value 0x35. This is an offset into the #Blob stream that

contains the parameters and return types for the swap method. At offset 0x775 (0x740 +

0x35 = 0x775) in the #Blob stream are these encoded types. The first byte, which is 0x05,

is the length of the #Blob entry minus the size byte itself.

The next byte contains calling convention flags. There are two mutually exclusive

calling convention flags: DEFAULT (0x00) and VARARG (0x05). The DEFAULT flag is

set when a method passes it’s parameters by pushing them onto the stack before calling the

method. The VARARG flag is used when a method has a variable number of arguments.

Special CIL instructions are used to put and get the parameters on and off the stack when

the VARARG flag is set. There is only one method type flag: HASTHIS (0x20). The

presence of this flag means that this is an instance method. If the HASTHIS flag is not

set, then this is a static method. This method has the DEFAULT and HASTHIS flags set.

This method is called in the default way.

The next byte contains the number of parameters this method has. In this case,

swap has 0x02 parameters. Next is the encoded type for the methods return value. The

value 0x01 (ELEMENT TYPE VOID) is the magic number for a void method. Next comes

an encoded type for each of the number of parameters read earlier. In this case the next two

encoded types are both ELEMENT TYPE I4 (0x08), which is the int32 value type [37].

Offset RVA GUID

780 2580 5a64 03bf 392f 0846 95a9 37ad 5959 531b

Table C.39: #GUID stream

The #GUID stream (see Table C.39) is next starting at RVA 0x2580. There is

always at least one Global Unique Identifier (GUID) in the #GUID stream because it

must store one GUID for the current assembly. The GUID is used to uniquely identify an

112

assembly. The rest of the .text section (offset 0x790 to 0x800) is padded with zeros so that

the .text section is aligned according to the File Alignment field in the NT Specific Table

(see Table C.5).

Type Directory

Entry 1
 Integer ID: 0x10
 Subdirectory Offset:

Name Directory

Entry 1
 Integer ID: 0x1
 Subdirectory Offset:

Language Directory

Entry 1
 Integer ID: 0x1
 Data Entry Offset:

Data Entry 1

Data RVA:

Resource
Bytes

Tree Level 1
 Resource Type

Tree Level 2
 Resource Identifier

Tree Level 3
 Resource Language

Tree Leaf

Figure C.3: Overview of .rsrc section

The .rsrc section is next starting at offset 0x800 and RVA 0x4000. The .rsrc section

contains unmanaged resources. If the Bubble Sort example had any managed resources,

which are managed by the virtual machine instead of the operating system, it would be

stored in the .text section. Resources in the .rsrc are characterized by three values: type,

name and language. These resources are stored in a tree that always has a depth of three

where each level of the tree represents one of the three characteristics mentioned earlier (see

Figure C.3). Each layer of the tree points to the next layer of the tree. Layer one contains

information about the resource type. Layer two contains a resource identifier in case there

is more than one resource of the same type. Layer three contains language information

about the resource [37][26]. Resources in the tree are represented by following the path in

the tree until you get to the leaf that points to the resource. For example, Figure C.3 has

one resource represented by Type 0x10, Identifier 0x1, and Language 0x1.

113

Offset RVA Name Value

800 4000 Characteristics 0000 0000

804 4004 Time/Date
Stamp

0000 0000

808 4008 Major Version 0000

80a 400a Minor Version 0000

80c 400c Number of
Name Entries

0000

80e 400e Number of ID
Entries

0001

Table C.40: Type directory

Offset RVA Name Value

810 4010 Integer ID 0000 0010

814 4014 Subdirectory
Offset

8000 0018

Table C.41: Entry 1

Offset RVA Name Value

818 4018 Characteristics 0000 0000

81c 401c Time/Date
Stamp

0000 0000

820 4020 Major Version 0000

822 4022 Minor Version 0000

824 4024 Number of
Name Entries

0000

826 4026 Number of ID
Entries

0001

Table C.42: Name directory

Offset RVA Name Value

828 4028 Integer ID 0000 0001

82c 402c Subdirectory
Offset

8000 0030

Table C.43: Entry 1

Table C.40 contains the type information for the one resource in the .rsrc section.

The Characteristics field contains no flags and is reserved for future use. The Time/Date

Stamp field contains the number of seconds since 00:00:00 UTC on January 1, 1970. In

this case this field was not used. The Major and Minor Version field are used to version

resources, but are not used here. Each Resource Directory Table contains one or more

Entries. These Entries can be either identified by names or ids. The Number of Name

Entries field contains the number of Entries identified by names. The Number of ID Entries

field contains the number of Entries identified by ids. Entries contain either a name or id

to distinguish them from other Entries.

Table C.41 contains the id 0x10. 0x10 is the magic number for the RT VERSION

type of resource that contains version information about the file that was embedded by the

Mono C# compiler that was used to compile the example code in Appendix A. If bit 31 of

the Subdirectory Offset field is a one, it contains an offset from the beginning of the .rsrc

114

Offset RVA Name Value

830 4030 Characteristics 0000 0000

834 4034 Time/Date
Stamp

0000 0000

838 4038 Major Version 0000

83a 403a Minor Version 0000

83c 403c Number of
Name Entries

0000

83e 403e Number of ID
Entries

0001

Table C.44: Language directory

Offset RVA Name Value

840 4040 Integer ID 0000 0001

844 4044 Data Entry
Offset

0000 0048

Table C.45: Entry 1

section to the next layer of the tree. If the same bit is a zero, it points to a Data Entry

leaf [37]. Therefore this Subdirectory Offset field points to the second layer of the tree since

offset 0x800 plus 0x18 equals offset 0x818.

Table C.42 contains identifier information about a resource. The fields in this table

are treated the same as the one in Table C.40. The one Entry (see Table C.43) contains

the ID 0x1. The Subdirectory Offset points to the third layer of the tree.

Offset RVA Name Value

848 4048 Data RVA 0000 4058

84c 404c Size 0000 028c

850 4050 Code Page 0000 0000

854 4054 Reserved 0000 0000

Table C.46: Data entry 1

Offset RVA Name Value

858 4058 wLength 028c

85a 405a wValueLength 0034

85c 405c wType 0000

85e 405e szKey 0056 0053 005f 0056 0045 0052 0053 0049
004f 004e 005f 0049 004e 0046 004f 0000

87e 407e Padding1 0000

Table C.47: VS VERSIONINFO structure

Table C.44 contains language information about the resource. The fields in Ta-

ble C.44 are treated the same as Table C.40. Layer three only has one Entry (see Table C.45)

115

and contains the language ID 0x1. Since bit 31 is not set in the Data Entry Offset field, it

points to a Data Entry leaf in the tree.

Table C.46 is the leaf in the tree that points to the raw bytes of the one resource in

the .rsrc section. The Data RVA field contains the RVA of where the resource bytes begin.

The Size field contains the number of bytes in the resource. The Code Page field is used to

decode resources and not used in this example. The Reserved field is not used and reserved

for future use.

Offset RVA Name Value

880 4080 dwSignature feef 04bd

884 4084 dwStrucVersion 0000 0001

888 4088 dwFileVersionMS 0000 0000

88c 408c dwFileVersionLS 0000 0000

890 4090 dwProductVersionMS 0000 0000

894 4094 dwProductVersionLS 0000 0000

898 4098 dwFileFlagsMask 0000 003f

89c 409c dwFileFlags 0000 0000

8a0 40a0 dwFileOS 0000 0004

8a4 40a4 dwFileType 0000 0002

8a8 40a8 dwFileSubtype 0000 0000

8ac 40ac dwFileDateMS 0000 0000

8b0 40b0 dwFileDateLS 0000 0000

Table C.48: VS FIXEDFILEINFO structure

Offset RVA Name Value

8b4 40b4 wLength 0044

8b6 40b6 wValueLength 0000

8b8 40b8 wType 0001

8ba 40ba szKey 0056 0061
0072 0046
0069 006c
0065 0049
006e 0066
006f 0000

8d2 40d2 Padding 0000

Table C.49: VarFileInfo structure

Offset RVA Name Value

8d4 40d4 wLength 0024

8d6 40d6 wValueLength 0004

8d8 40d8 wType 0000

8da 40da szKey 0054 0072
0061 006e
0073 006c
0061 0074
0069 006f
006e 0000

8f2 40f2 Padding 0000

8f4 40f4 Language ID 04b0 007f

Table C.50: Var structure

116

Offset RVA Name Value

8f8 40f8 wLength 01ec

8fa 40fa wValueLength 0000

8fc 40fc wType 0001

8fe 40fe szKey 0053 0074
0072 0069
006e 0067
0046 0069
006c 0065
0049 006e
0066 006f
0000

Table C.51: StringFileInfo structure

Offset RVA Name Value

91c 411c wLength 01c8

91e 411e wValueLength 0000

920 4120 wType 0001

922 4122 szKey 0003 0003
0037 0066
0003 0034
0062 0003

932 4132 Padding 0000

Table C.52: StringTable structure

Offset RVA Name Value

934 4134 wLength 0028

936 4136 wValueLength 0002

938 4138 wType 0001

93a 413a szKey 0050 0072
006f 0064
0075 0063
0074 0056
0065 0072
0073 0069
006f 006e
0000

958 4158 Value 0020 0000

Table C.53: String structure 1

Offset RVA Name Value

95c 415c wLength 0024

95e 415e wValueLength 0002

960 4160 wType 0001

962 4162 szKey 0043 006f
006d 0070
0061 006e
0079 004e
0061 006d
0065 0000

97a 417a Padding 0000

97c 417c Value 0020 0000

Table C.54: String structure 2

Offset RVA Name Value

980 4180 wLength 0024

982 4182 wValueLength 0002

984 4184 wType 0001

986 4186 szKey 0050 0072
006f 0064
0075 0063
0074 004e
0061 006d
0065 0000

99e 419e Padding 0000

9a0 41a0 Value 0020 0000

Table C.55: String structure 3

Offset RVA Name Value

9a4 41a4 wLength 0028

9a6 41a6 wValueLength 0002

9a8 41a8 wType 0001

9aa 41aa szKey 004c 0065
0067 0061
006c 0043
006f 0070
0079 0072
0069 0067
0068 0074
0000

9c8 41c8 Value 0020 0000

Table C.56: String structure 4

117

Offset RVA Name Value

9cc 41cc wLength 0038

9ce 41ce wValueLength 000b

9d0 41d0 wType 0001

9d2 41d2 szKey 0049 006e
0074 0065
0072 006e
0061 006c
004e 0061
006d 0065
0000

9ec 41ec Value 0042 0075
0062 0062
006c 0065
0053 006f
0072 0074
0000 0000

Table C.57: String structure 5

Offset RVA Name Value

a04 4204 wLength 002c

a06 4206 wValueLength 0002

a08 4208 wType 0001

a0a 420a szKey 0046 0069
006c 0065
0044 0065
0073 0063
0072 0069
0070 0074
0069 006f
006e 0000

a2a 422a Padding 0000

a2c 422c Value 0020 0000

Table C.58: String structure 6

Offset RVA Name Value

a30 4230 wLength 001c

a32 4232 wValueLength 0002

a34 4234 wType 0001

a36 4236 szKey 0043 006f
006d 006d
0065 006e
0074 0073
0000

a48 4248 Value 0020 0000

Table C.59: String structure 7

Offset RVA Name Value

a4c 424c wLength 0024

a4e 424e wValueLength 0002

a50 4250 wType 0001

a52 4252 szKey 0046 0069
006c 0065
0056 0065
0072 0073
0069 006f
006e 0000

a6a 426a Padding 0000

a6c 426c Value 0020 0000

Table C.60: String structure 8

The one resource in the .rsrc section is represented as a VS VERSIONINFO [35]

structure. The VS VERSIONINFO structure gives information like company name, file

version, and product name about a file in unicode. The VS VERSIONINFO structure

is composed of VS FIXEDFILEINFO [34], VarFileInfo [33], Var [32], StringFileInfo [30],

StringTable [31], and String [29] structures that were parsed into Tables C.47 to C.62 for this

example. See Microsoft’s Developer Network for more information [35][34][33][32][30][31][29].

The rest of the .rsrc section, from offset 0xae4 to 0xbff, is padded with zero bytes.

Next is the last section in the assembly, which is the .reloc section. The .reloc

section starts at offset 0xc00 and RVA 0x6000. The .reloc section is a collection of Fix Up

118

Offset RVA Name Value

a70 4270 wLength 0048

a72 4272 wValueLength 000f

a74 4274 wType 0001

a76 4276 szKey 004f 0072
0069 0067
0069 006e
0061 006c
0046 0069
006c 0065
006e 0061
006d 0065
0000

a98 4298 Value 0042 0075
0062 0062
006c 0065
0053 006f
0072 0074
002e 0065
0078 0065
0000 0000

Table C.61: String structure 9

Offset RVA Name Value

ab8 42b8 wLength 002c

aba 42ba wValueLength 0002

abc 42bc wType 0001

abe 42be szKey 004c 0065
0067 0061
006c 0054
0072 0061
0064 0065
006d 0061
0072 006b
0073 0000

ade 42de Padding 0000

ae0 42e0 Value 0020 0000

Table C.62: String structure 10

Offset RVA Name Value

c00 6000 Page RVA 0000 2000

c04 6004 Block Size 0000 000c

c08 6008 Type/Offset
Entries

3002

c0a 600a Type/Offset
Entries

0000

Table C.63: Fix Up 1

Tables, one after another. The .reloc section in this example only has one Fix Up Table (see

Table C.63). The Page RVA gives the RVA of the section to relocate. In this example, RVA

0x0000 2000 is the .text section. The Block Size field gives the size of this Fix Up Table

in bytes. Following the Block Size field is one or more Type/Offset Entries, which are two

bytes each. To find the number of Type/Offset Entries, subtract eight from the Block Size

and divide by two. In this case, there is two Type/Offset Entry ((0xc - 0x8)/0x2 = 2).

Each Type/Offset Entry contains a Fix Up type and an offset to apply to the

section. Bits 1 to 4 of the Type/Offset Entry contains the Fix Up type. The first

Type/Offset Entry has type B0010, which is the IMAGE REL BASED LOW type. The

119

IMAGE REL BASED LOW type calculates a delta by taking the difference of the Image

Base field in Table C.5 and the offset of the section to relocate. If this delta is zero, this

section fix up is skipped. If it is not zero, the low 16 bits of the delta are added to the

offset in the Type/Offset Entry after the type is masked out. Then the lower 16 bits of the

result are added to the RVA of the section to be relocated. Therefore, the delta for this

Type/Offset is 0x003f e000 (0x0040 0000 - 0x2000). Since the delta is not zero, the lower 16

bits of this delta (0xe000) is added to the Type/Offset Entry after the type is masked out

(0x3000) and the result is 0x1 0000. The lower 16 bits of this value is added to the current

offset and then the section is relocated there. Therefore the .text section is relocated from

where it is now at RVA 0x2000 to 0x2000 plus 0x0000. In the end the .text section did

not move because the lower 16 bits of the previous result was 0x0000. Type/Offset Entry

two at offset 0xc08 has type B0000, which means this section fix up is skipped. The rest

of the .reloc section, from offset 0xc0c to 0xdff, is padded with zero bytes. That ends the

explanation of the bytes in Appendix B generated by compiling the code in Appendix A.

Vita

Shawn H. Windle was born in New Orleans, Louisiana on August 23, 1976. He graduated

from Warner Robins High School in Warner Robins, Georgia in 1994. He graduated from

Lees-McRae College in 2003 with a Bachelor of Science degree in Computer Information

Systems with a concentration in Mathematics. He entered Appalachian State University in

2005 to get a Master of Science degree in Computer Science. During his Computer Science

studies, he received the NSF-funded CSEMS scholarship. He was also a Graduate Teach-

ing Assistant for Professor Kenneth Jacker in his Spring 2005 Introduction To Computer

Systems class. Currently he works as a programmer and system administrator at KSPCS

in Boone, North Carolina. He received his Master of Science degree in Computer Science

in December of 2012.

120

